aboutsummaryrefslogtreecommitdiffstats
path: root/lib/hal-stm32f1/source/stm32f1xx_hal_spi.c
diff options
context:
space:
mode:
authorGrigori Goronzy <greg@chown.ath.cx>2018-03-31 15:34:59 +0200
committerKevinOConnor <kevin@koconnor.net>2018-04-09 18:08:29 -0400
commit75d57372115eb70ac22d16240c5c887df8ae1da8 (patch)
treed31b31d32f80916c8406fc663994260a1acaa786 /lib/hal-stm32f1/source/stm32f1xx_hal_spi.c
parente097b085209e4737abc71dbb0fc06408a6e1f6d1 (diff)
downloadkutter-75d57372115eb70ac22d16240c5c887df8ae1da8.tar.gz
kutter-75d57372115eb70ac22d16240c5c887df8ae1da8.tar.xz
kutter-75d57372115eb70ac22d16240c5c887df8ae1da8.zip
Add STM32F103 port
Add a fully functional STM32F1 port, currently mostly targeting STM32F103 microcontrollers. This requires an 8 MHz XTAL. The maximum possible step rate is around 282K steps per second. This uses stm32flash to burn the firmware. The bootloader needs to be started by setting BOOT0 to 1 and resetting the MCU. There is no automatic bootloader, unlike on Arduino. Signed-off-by: Grigori Goronzy <greg@kinoho.net>
Diffstat (limited to 'lib/hal-stm32f1/source/stm32f1xx_hal_spi.c')
-rw-r--r--lib/hal-stm32f1/source/stm32f1xx_hal_spi.c3266
1 files changed, 3266 insertions, 0 deletions
diff --git a/lib/hal-stm32f1/source/stm32f1xx_hal_spi.c b/lib/hal-stm32f1/source/stm32f1xx_hal_spi.c
new file mode 100644
index 00000000..109080e6
--- /dev/null
+++ b/lib/hal-stm32f1/source/stm32f1xx_hal_spi.c
@@ -0,0 +1,3266 @@
+/**
+ ******************************************************************************
+ * @file stm32f1xx_hal_spi.c
+ * @author MCD Application Team
+ * @version V1.1.1
+ * @date 12-May-2017
+ * @brief SPI HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Serial Peripheral Interface (SPI) peripheral:
+ * + Initialization and de-initialization functions
+ * + IO operation functions
+ * + Peripheral Control functions
+ * + Peripheral State functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ The SPI HAL driver can be used as follows:
+
+ (#) Declare a SPI_HandleTypeDef handle structure, for example:
+ SPI_HandleTypeDef hspi;
+
+ (#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API:
+ (##) Enable the SPIx interface clock
+ (##) SPI pins configuration
+ (+++) Enable the clock for the SPI GPIOs
+ (+++) Configure these SPI pins as alternate function push-pull
+ (##) NVIC configuration if you need to use interrupt process
+ (+++) Configure the SPIx interrupt priority
+ (+++) Enable the NVIC SPI IRQ handle
+ (##) DMA Configuration if you need to use DMA process
+ (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive Channel
+ (+++) Enable the DMAx clock
+ (+++) Configure the DMA handle parameters
+ (+++) Configure the DMA Tx or Rx Channel
+ (+++) Associate the initilalized hdma_tx(or _rx) handle to the hspi DMA Tx (or Rx) handle
+ (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Channel
+
+ (#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS
+ management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure.
+
+ (#) Initialize the SPI registers by calling the HAL_SPI_Init() API:
+ (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
+ by calling the customized HAL_SPI_MspInit() API.
+ [..]
+ Circular mode restriction:
+ (#) The DMA circular mode cannot be used when the SPI is configured in these modes:
+ (##) Master 2Lines RxOnly
+ (##) Master 1Line Rx
+ (#) The CRC feature is not managed when the DMA circular mode is enabled
+ (#) When the SPI DMA Pause/Stop features are used, we must use the following APIs
+ the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks
+ [..]
+ Master Receive mode restriction:
+ (#) In Master unidirectional receive-only mode (MSTR =1, BIDIMODE=0, RXONLY=0) or
+ bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0), to ensure that the SPI
+ does not initiate a new transfer the following procedure has to be respected:
+ (##) HAL_SPI_DeInit()
+ (##) HAL_SPI_Init()
+
+ @endverbatim
+
+ Using the HAL it is not possible to reach all supported SPI frequency with the differents SPI Modes,
+ the following tables resume the max SPI frequency reached with data size 8bits/16bits,
+ according to frequency used on APBx Peripheral Clock (fPCLK) used by the SPI instance :
+
+ DataSize = SPI_DATASIZE_8BIT:
+ +--------------------------------------------------------------------------------------------------+
+ | | | 2Lines Fullduplex | 2Lines RxOnly | 1Line |
+ | Process | Tranfert mode |-----------------------|-----------------------|-----------------------|
+ | | | Master | Slave | Master | Slave | Master | Slave |
+ |==================================================================================================|
+ | T | Polling | fPCLK/2 | fPCLK/16 | NA | NA | NA | NA |
+ | X |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | / | Interrupt | fPCLK/8 | fPCLK/32 | NA | NA | NA | NA |
+ | R |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | X | DMA | fPCLK/2 | fPCLK/4 | NA | NA | NA | NA |
+ |=========|================|===========|===========|===========|===========|===========|===========|
+ | | Polling | fPCLK/4 | fPCLK/8 | fPCLK/8 | fPCLK/16 | fPCLK/64 | fPCLK/2 |
+ | |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | R | Interrupt | fPCLK/8 | fPCLK/16 | fPCLK/32 | fPCLK/16 | fPCLK/64 | fPCLK/4 |
+ | X |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | | DMA | fPCLK/2 | fPCLK/16 | fPCLK/8 | fPCLK/16 | fPCLK/64 | fPCLK/2 |
+ |=========|================|===========|===========|===========|===========|===========|===========|
+ | | Polling | fPCLK/2 | fPCLK/2 | NA | NA | fPCLK/2 | fPCLK/32 |
+ | |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | T | Interrupt | fPCLK/8 | fPCLK/16 | NA | NA | fPCLK/2 | fPCLK/64 |
+ | X |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | | DMA | fPCLK/2 | fPCLK/4 | NA | NA | fPCLK/2 | fPCLK/32 |
+ +--------------------------------------------------------------------------------------------------+
+
+ DataSize = SPI_DATASIZE_16BIT:
+ +--------------------------------------------------------------------------------------------------+
+ | | | 2Lines Fullduplex | 2Lines RxOnly | 1Line |
+ | Process | Tranfert mode |-----------------------|-----------------------|-----------------------|
+ | | | Master | Slave | Master | Slave | Master | Slave |
+ |==================================================================================================|
+ | T | Polling | fPCLK/4 | fPCLK/4 | NA | NA | NA | NA |
+ | X |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | / | Interrupt | fPCLK/8 | fPCLK/16 | NA | NA | NA | NA |
+ | R |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | X | DMA | fPCLK/2 | fPCLK/4 | NA | NA | NA | NA |
+ |=========|================|===========|===========|===========|===========|===========|===========|
+ | | Polling | fPCLK/4 | fPCLK/8 | fPCLK/4 | fPCLK/8 | fPCLK/64 | fPCLK/2 |
+ | |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | R | Interrupt | fPCLK/8 | fPCLK/8 | fPCLK/128 | fPCLK/8 | fPCLK/128 | fPCLK/4 |
+ | X |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | | DMA | fPCLK/2 | fPCLK/2 | fPCLK/128 | fPCLK/16 | fPCLK/64 | fPCLK/2 |
+ |=========|================|===========|===========|===========|===========|===========|===========|
+ | | Polling | fPCLK/2 | fPCLK/4 | NA | NA | fPCLK/4 | fPCLK/8 |
+ | |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | T | Interrupt | fPCLK/4 | fPCLK/8 | NA | NA | fPCLK/4 | fPCLK/4 |
+ | X |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
+ | | DMA | fPCLK/2 | fPCLK/2 | NA | NA | fPCLK/4 | fPCLK/8 |
+ +--------------------------------------------------------------------------------------------------+
+ [..]
+ (@) The max SPI frequency depend on SPI data size (8bits, 16bits),
+ SPI mode(2 Lines fullduplex, 2 lines RxOnly, 1 line TX/RX) and Process mode (Polling, IT, DMA).
+ (@)
+ (+@) TX/RX processes are HAL_SPI_TransmitReceive(), HAL_SPI_TransmitReceive_IT() and HAL_SPI_TransmitReceive_DMA()
+ (+@) RX processes are HAL_SPI_Receive(), HAL_SPI_Receive_IT() and HAL_SPI_Receive_DMA()
+ (+@) TX processes are HAL_SPI_Transmit(), HAL_SPI_Transmit_IT() and HAL_SPI_Transmit_DMA()
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+/** @addtogroup STM32F1xx_HAL_Driver
+ * @{
+ */
+/** @defgroup SPI SPI
+ * @brief SPI HAL module driver
+ * @{
+ */
+#ifdef HAL_SPI_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private defines -----------------------------------------------------------*/
+/** @defgroup SPI_Private_Constants SPI Private Constants
+ * @{
+ */
+#define SPI_DEFAULT_TIMEOUT 100U
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @addtogroup SPI_Private_Functions
+ * @{
+ */
+static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
+static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
+static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
+static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma);
+static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma);
+static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma);
+static void SPI_DMAError(DMA_HandleTypeDef *hdma);
+static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma);
+static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
+static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
+static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout, uint32_t Tickstart);
+static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
+static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
+static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
+static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
+static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
+static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
+static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
+static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
+#if (USE_SPI_CRC != 0U)
+static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
+static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
+static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
+static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
+#endif /* USE_SPI_CRC */
+static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi);
+static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi);
+static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi);
+static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi);
+static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi);
+static HAL_StatusTypeDef SPI_CheckFlag_BSY(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart);
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+/** @defgroup SPI_Exported_Functions SPI Exported Functions
+ * @{
+ */
+
+/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..] This subsection provides a set of functions allowing to initialize and
+ de-initialize the SPIx peripheral:
+
+ (+) User must implement HAL_SPI_MspInit() function in which he configures
+ all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
+
+ (+) Call the function HAL_SPI_Init() to configure the selected device with
+ the selected configuration:
+ (++) Mode
+ (++) Direction
+ (++) Data Size
+ (++) Clock Polarity and Phase
+ (++) NSS Management
+ (++) BaudRate Prescaler
+ (++) FirstBit
+ (++) TIMode
+ (++) CRC Calculation
+ (++) CRC Polynomial if CRC enabled
+
+ (+) Call the function HAL_SPI_DeInit() to restore the default configuration
+ of the selected SPIx peripheral.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initialize the SPI according to the specified parameters
+ * in the SPI_InitTypeDef and initialize the associated handle.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval HAL status
+ */
+__weak HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
+{
+ /* Check the SPI handle allocation */
+ if(hspi == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
+ assert_param(IS_SPI_MODE(hspi->Init.Mode));
+ assert_param(IS_SPI_DIRECTION(hspi->Init.Direction));
+ assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
+ assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
+ assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
+ assert_param(IS_SPI_NSS(hspi->Init.NSS));
+ assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
+ assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
+
+#if (USE_SPI_CRC != 0U)
+ assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));
+ }
+#else
+ hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
+#endif /* USE_SPI_CRC */
+
+ if(hspi->State == HAL_SPI_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ hspi->Lock = HAL_UNLOCKED;
+
+ /* Init the low level hardware : GPIO, CLOCK, NVIC... */
+ HAL_SPI_MspInit(hspi);
+ }
+
+ hspi->State = HAL_SPI_STATE_BUSY;
+
+ /* Disable the selected SPI peripheral */
+ __HAL_SPI_DISABLE(hspi);
+
+ /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/
+ /* Configure : SPI Mode, Communication Mode, Data size, Clock polarity and phase, NSS management,
+ Communication speed, First bit and CRC calculation state */
+ WRITE_REG(hspi->Instance->CR1, (hspi->Init.Mode | hspi->Init.Direction | hspi->Init.DataSize |
+ hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) |
+ hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit | hspi->Init.CRCCalculation) );
+
+ /* Configure : NSS management */
+ WRITE_REG(hspi->Instance->CR2, (((hspi->Init.NSS >> 16U) & SPI_CR2_SSOE) | hspi->Init.TIMode));
+
+#if (USE_SPI_CRC != 0U)
+ /*---------------------------- SPIx CRCPOLY Configuration ------------------*/
+ /* Configure : CRC Polynomial */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ WRITE_REG(hspi->Instance->CRCPR, hspi->Init.CRCPolynomial);
+ }
+#endif /* USE_SPI_CRC */
+
+#if defined(SPI_I2SCFGR_I2SMOD)
+ /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
+ CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD);
+#endif /* SPI_I2SCFGR_I2SMOD */
+
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->State = HAL_SPI_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief De Initialize the SPI peripheral.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi)
+{
+ /* Check the SPI handle allocation */
+ if(hspi == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check SPI Instance parameter */
+ assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
+
+ hspi->State = HAL_SPI_STATE_BUSY;
+
+ /* Disable the SPI Peripheral Clock */
+ __HAL_SPI_DISABLE(hspi);
+
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
+ HAL_SPI_MspDeInit(hspi);
+
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->State = HAL_SPI_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(hspi);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initialize the SPI MSP.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_MspInit should be implemented in the user file
+ */
+}
+
+/**
+ * @brief De-Initialize the SPI MSP.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_MspDeInit should be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SPI_Exported_Functions_Group2 IO operation functions
+ * @brief Data transfers functions
+ *
+@verbatim
+ ==============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to manage the SPI
+ data transfers.
+
+ [..] The SPI supports master and slave mode :
+
+ (#) There are two modes of transfer:
+ (++) Blocking mode: The communication is performed in polling mode.
+ The HAL status of all data processing is returned by the same function
+ after finishing transfer.
+ (++) No-Blocking mode: The communication is performed using Interrupts
+ or DMA, These APIs return the HAL status.
+ The end of the data processing will be indicated through the
+ dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when
+ using DMA mode.
+ The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks
+ will be executed respectively at the end of the transmit or Receive process
+ The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected
+
+ (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA)
+ exist for 1Line (simplex) and 2Lines (full duplex) modes.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Transmit an amount of data in blocking mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param pData: pointer to data buffer
+ * @param Size: amount of data to be sent
+ * @param Timeout: Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+ uint32_t tickstart = 0U;
+ HAL_StatusTypeDef errorcode = HAL_OK;
+
+ /* Check Direction parameter */
+ assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
+
+ /* Process Locked */
+ __HAL_LOCK(hspi);
+
+ /* Init tickstart for timeout management*/
+ tickstart = HAL_GetTick();
+
+ if(hspi->State != HAL_SPI_STATE_READY)
+ {
+ errorcode = HAL_BUSY;
+ goto error;
+ }
+
+ if((pData == NULL ) || (Size == 0U))
+ {
+ errorcode = HAL_ERROR;
+ goto error;
+ }
+
+ /* Set the transaction information */
+ hspi->State = HAL_SPI_STATE_BUSY_TX;
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->pTxBuffPtr = (uint8_t *)pData;
+ hspi->TxXferSize = Size;
+ hspi->TxXferCount = Size;
+
+ /*Init field not used in handle to zero */
+ hspi->pRxBuffPtr = (uint8_t *)NULL;
+ hspi->RxXferSize = 0U;
+ hspi->RxXferCount = 0U;
+ hspi->TxISR = NULL;
+ hspi->RxISR = NULL;
+
+ /* Configure communication direction : 1Line */
+ if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
+ {
+ SPI_1LINE_TX(hspi);
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Check if the SPI is already enabled */
+ if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
+ {
+ /* Enable SPI peripheral */
+ __HAL_SPI_ENABLE(hspi);
+ }
+
+ /* Transmit data in 16 Bit mode */
+ if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
+ {
+ if((hspi->Init.Mode == SPI_MODE_SLAVE) || (hspi->TxXferCount == 0x01))
+ {
+ hspi->Instance->DR = *((uint16_t *)pData);
+ pData += sizeof(uint16_t);
+ hspi->TxXferCount--;
+ }
+ /* Transmit data in 16 Bit mode */
+ while (hspi->TxXferCount > 0U)
+ {
+ /* Wait until TXE flag is set to send data */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE))
+ {
+ hspi->Instance->DR = *((uint16_t *)pData);
+ pData += sizeof(uint16_t);
+ hspi->TxXferCount--;
+ }
+ else
+ {
+ /* Timeout management */
+ if((Timeout == 0U) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)))
+ {
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+ }
+ }
+ }
+ /* Transmit data in 8 Bit mode */
+ else
+ {
+ if((hspi->Init.Mode == SPI_MODE_SLAVE)|| (hspi->TxXferCount == 0x01))
+ {
+ *((__IO uint8_t*)&hspi->Instance->DR) = (*pData);
+ pData += sizeof(uint8_t);
+ hspi->TxXferCount--;
+ }
+ while (hspi->TxXferCount > 0U)
+ {
+ /* Wait until TXE flag is set to send data */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE))
+ {
+ *((__IO uint8_t*)&hspi->Instance->DR) = (*pData);
+ pData += sizeof(uint8_t);
+ hspi->TxXferCount--;
+ }
+ else
+ {
+ /* Timeout management */
+ if((Timeout == 0U) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)))
+ {
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+ }
+ }
+ }
+
+ /* Wait until TXE flag */
+ if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_TXE, SET, Timeout, tickstart) != HAL_OK)
+ {
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+
+ /* Check Busy flag */
+ if(SPI_CheckFlag_BSY(hspi, Timeout, tickstart) != HAL_OK)
+ {
+ errorcode = HAL_ERROR;
+ hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
+ goto error;
+ }
+
+ /* Clear overrun flag in 2 Lines communication mode because received is not read */
+ if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
+ {
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+ }
+#if (USE_SPI_CRC != 0U)
+ /* Enable CRC Transmission */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+ }
+#endif /* USE_SPI_CRC */
+
+ if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
+ {
+ errorcode = HAL_ERROR;
+ }
+
+error:
+ hspi->State = HAL_SPI_STATE_READY;
+ /* Process Unlocked */
+ __HAL_UNLOCK(hspi);
+ return errorcode;
+}
+
+/**
+ * @brief Receive an amount of data in blocking mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param pData: pointer to data buffer
+ * @param Size: amount of data to be received
+ * @param Timeout: Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+#if (USE_SPI_CRC != 0U)
+ __IO uint16_t tmpreg = 0U;
+#endif /* USE_SPI_CRC */
+ uint32_t tickstart = 0U;
+ HAL_StatusTypeDef errorcode = HAL_OK;
+
+ if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
+ {
+ hspi->State = HAL_SPI_STATE_BUSY_RX;
+ /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
+ return HAL_SPI_TransmitReceive(hspi,pData,pData,Size,Timeout);
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hspi);
+
+ /* Init tickstart for timeout management*/
+ tickstart = HAL_GetTick();
+
+ if(hspi->State != HAL_SPI_STATE_READY)
+ {
+ errorcode = HAL_BUSY;
+ goto error;
+ }
+
+ if((pData == NULL ) || (Size == 0U))
+ {
+ errorcode = HAL_ERROR;
+ goto error;
+ }
+
+ /* Set the transaction information */
+ hspi->State = HAL_SPI_STATE_BUSY_RX;
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->pRxBuffPtr = (uint8_t *)pData;
+ hspi->RxXferSize = Size;
+ hspi->RxXferCount = Size;
+
+ /*Init field not used in handle to zero */
+ hspi->pTxBuffPtr = (uint8_t *)NULL;
+ hspi->TxXferSize = 0U;
+ hspi->TxXferCount = 0U;
+ hspi->RxISR = NULL;
+ hspi->TxISR = NULL;
+
+#if (USE_SPI_CRC != 0U)
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ /* this is done to handle the CRCNEXT before the latest data */
+ hspi->RxXferCount--;
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Configure communication direction: 1Line */
+ if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
+ {
+ SPI_1LINE_RX(hspi);
+ }
+
+ /* Check if the SPI is already enabled */
+ if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
+ {
+ /* Enable SPI peripheral */
+ __HAL_SPI_ENABLE(hspi);
+ }
+
+ /* Receive data in 8 Bit mode */
+ if(hspi->Init.DataSize == SPI_DATASIZE_8BIT)
+ {
+ /* Transfer loop */
+ while(hspi->RxXferCount > 0U)
+ {
+ /* Check the RXNE flag */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE))
+ {
+ /* read the received data */
+ (* (uint8_t *)pData)= *(__IO uint8_t *)&hspi->Instance->DR;
+ pData += sizeof(uint8_t);
+ hspi->RxXferCount--;
+ }
+ else
+ {
+ /* Timeout management */
+ if((Timeout == 0U) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)))
+ {
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Transfer loop */
+ while(hspi->RxXferCount > 0U)
+ {
+ /* Check the RXNE flag */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE))
+ {
+ *((uint16_t*)pData) = hspi->Instance->DR;
+ pData += sizeof(uint16_t);
+ hspi->RxXferCount--;
+ }
+ else
+ {
+ /* Timeout management */
+ if((Timeout == 0U) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)))
+ {
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+ }
+ }
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Handle the CRC Transmission */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ /* freeze the CRC before the latest data */
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+
+ /* Read the latest data */
+ if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
+ {
+ /* the latest data has not been received */
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+
+ /* Receive last data in 16 Bit mode */
+ if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
+ {
+ *((uint16_t*)pData) = hspi->Instance->DR;
+ }
+ /* Receive last data in 8 Bit mode */
+ else
+ {
+ (*(uint8_t *)pData) = *(__IO uint8_t *)&hspi->Instance->DR;
+ }
+
+ /* Wait the CRC data */
+ if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+
+ /* Read CRC to Flush DR and RXNE flag */
+ tmpreg = hspi->Instance->DR;
+ /* To avoid GCC warning */
+ UNUSED(tmpreg);
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Check the end of the transaction */
+ if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
+ {
+ /* Disable SPI peripheral */
+ __HAL_SPI_DISABLE(hspi);
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Check if CRC error occurred */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
+ {
+ /* Check if CRC error is valid or not (workaround to be applied or not) */
+ if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+
+ /* Reset CRC Calculation */
+ SPI_RESET_CRC(hspi);
+ }
+ else
+ {
+ __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
+ }
+ }
+#endif /* USE_SPI_CRC */
+
+ if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
+ {
+ errorcode = HAL_ERROR;
+ }
+
+error :
+ hspi->State = HAL_SPI_STATE_READY;
+ __HAL_UNLOCK(hspi);
+ return errorcode;
+}
+
+/**
+ * @brief Transmit and Receive an amount of data in blocking mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param pTxData: pointer to transmission data buffer
+ * @param pRxData: pointer to reception data buffer
+ * @param Size: amount of data to be sent and received
+ * @param Timeout: Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
+{
+ uint32_t tmp = 0U, tmp1 = 0U;
+#if (USE_SPI_CRC != 0U)
+ __IO uint16_t tmpreg1 = 0U;
+#endif /* USE_SPI_CRC */
+ uint32_t tickstart = 0U;
+ /* Variable used to alternate Rx and Tx during transfer */
+ uint32_t txallowed = 1U;
+ HAL_StatusTypeDef errorcode = HAL_OK;
+
+ /* Check Direction parameter */
+ assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
+
+ /* Process Locked */
+ __HAL_LOCK(hspi);
+
+ /* Init tickstart for timeout management*/
+ tickstart = HAL_GetTick();
+
+ tmp = hspi->State;
+ tmp1 = hspi->Init.Mode;
+
+ if(!((tmp == HAL_SPI_STATE_READY) || \
+ ((tmp1 == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp == HAL_SPI_STATE_BUSY_RX))))
+ {
+ errorcode = HAL_BUSY;
+ goto error;
+ }
+
+ if((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
+ {
+ errorcode = HAL_ERROR;
+ goto error;
+ }
+
+ /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
+ if(hspi->State == HAL_SPI_STATE_READY)
+ {
+ hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
+ }
+
+ /* Set the transaction information */
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->pRxBuffPtr = (uint8_t *)pRxData;
+ hspi->RxXferCount = Size;
+ hspi->RxXferSize = Size;
+ hspi->pTxBuffPtr = (uint8_t *)pTxData;
+ hspi->TxXferCount = Size;
+ hspi->TxXferSize = Size;
+
+ /*Init field not used in handle to zero */
+ hspi->RxISR = NULL;
+ hspi->TxISR = NULL;
+
+#if (USE_SPI_CRC != 0U)
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Check if the SPI is already enabled */
+ if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
+ {
+ /* Enable SPI peripheral */
+ __HAL_SPI_ENABLE(hspi);
+ }
+
+ /* Transmit and Receive data in 16 Bit mode */
+ if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
+ {
+ if((hspi->Init.Mode == SPI_MODE_SLAVE) || (hspi->TxXferCount == 0x01U))
+ {
+ hspi->Instance->DR = *((uint16_t *)pTxData);
+ pTxData += sizeof(uint16_t);
+ hspi->TxXferCount--;
+ }
+ while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
+ {
+ /* Check TXE flag */
+ if(txallowed && (hspi->TxXferCount > 0U) && (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)))
+ {
+ hspi->Instance->DR = *((uint16_t *)pTxData);
+ pTxData += sizeof(uint16_t);
+ hspi->TxXferCount--;
+ /* Next Data is a reception (Rx). Tx not allowed */
+ txallowed = 0U;
+
+#if (USE_SPI_CRC != 0U)
+ /* Enable CRC Transmission */
+ if((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
+ {
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+ }
+#endif /* USE_SPI_CRC */
+ }
+
+ /* Check RXNE flag */
+ if((hspi->RxXferCount > 0U) && (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)))
+ {
+ *((uint16_t *)pRxData) = hspi->Instance->DR;
+ pRxData += sizeof(uint16_t);
+ hspi->RxXferCount--;
+ /* Next Data is a Transmission (Tx). Tx is allowed */
+ txallowed = 1U;
+ }
+ if((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout))
+ {
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+ }
+ }
+ /* Transmit and Receive data in 8 Bit mode */
+ else
+ {
+ if((hspi->Init.Mode == SPI_MODE_SLAVE) || (hspi->TxXferCount == 0x01U))
+ {
+ *((__IO uint8_t*)&hspi->Instance->DR) = (*pTxData);
+ pTxData += sizeof(uint8_t);
+ hspi->TxXferCount--;
+ }
+ while((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
+ {
+ /* check TXE flag */
+ if(txallowed && (hspi->TxXferCount > 0U) && (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)))
+ {
+ *(__IO uint8_t *)&hspi->Instance->DR = (*pTxData++);
+ hspi->TxXferCount--;
+ /* Next Data is a reception (Rx). Tx not allowed */
+ txallowed = 0U;
+
+#if (USE_SPI_CRC != 0U)
+ /* Enable CRC Transmission */
+ if((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
+ {
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+ }
+#endif /* USE_SPI_CRC */
+ }
+
+ /* Wait until RXNE flag is reset */
+ if((hspi->RxXferCount > 0U) && (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)))
+ {
+ (*(uint8_t *)pRxData++) = hspi->Instance->DR;
+ hspi->RxXferCount--;
+ /* Next Data is a Transmission (Tx). Tx is allowed */
+ txallowed = 1U;
+ }
+ if((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout))
+ {
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+ }
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Read CRC from DR to close CRC calculation process */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ /* Wait until TXE flag */
+ if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
+ {
+ /* Error on the CRC reception */
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+ /* Read CRC */
+ tmpreg1 = hspi->Instance->DR;
+ /* To avoid GCC warning */
+ UNUSED(tmpreg1);
+ }
+
+ /* Check if CRC error occurred */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
+ {
+ /* Check if CRC error is valid or not (workaround to be applied or not) */
+ if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+
+ /* Reset CRC Calculation */
+ SPI_RESET_CRC(hspi);
+
+ errorcode = HAL_ERROR;
+ }
+ else
+ {
+ __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
+ }
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Wait until TXE flag */
+ if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_TXE, SET, Timeout, tickstart) != HAL_OK)
+ {
+ errorcode = HAL_TIMEOUT;
+ goto error;
+ }
+
+ /* Check Busy flag */
+ if(SPI_CheckFlag_BSY(hspi, Timeout, tickstart) != HAL_OK)
+ {
+ errorcode = HAL_ERROR;
+ hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
+ goto error;
+ }
+
+ /* Clear overrun flag in 2 Lines communication mode because received is not read */
+ if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
+ {
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+ }
+
+error :
+ hspi->State = HAL_SPI_STATE_READY;
+ __HAL_UNLOCK(hspi);
+ return errorcode;
+}
+
+/**
+ * @brief Transmit an amount of data in non-blocking mode with Interrupt.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param pData: pointer to data buffer
+ * @param Size: amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
+{
+ HAL_StatusTypeDef errorcode = HAL_OK;
+
+ /* Check Direction parameter */
+ assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
+
+ /* Process Locked */
+ __HAL_LOCK(hspi);
+
+ if((pData == NULL) || (Size == 0U))
+ {
+ errorcode = HAL_ERROR;
+ goto error;
+ }
+
+ if(hspi->State != HAL_SPI_STATE_READY)
+ {
+ errorcode = HAL_BUSY;
+ goto error;
+ }
+
+ /* Set the transaction information */
+ hspi->State = HAL_SPI_STATE_BUSY_TX;
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->pTxBuffPtr = (uint8_t *)pData;
+ hspi->TxXferSize = Size;
+ hspi->TxXferCount = Size;
+
+ /* Init field not used in handle to zero */
+ hspi->pRxBuffPtr = (uint8_t *)NULL;
+ hspi->RxXferSize = 0U;
+ hspi->RxXferCount = 0U;
+ hspi->RxISR = NULL;
+
+ /* Set the function for IT treatment */
+ if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
+ {
+ hspi->TxISR = SPI_TxISR_16BIT;
+ }
+ else
+ {
+ hspi->TxISR = SPI_TxISR_8BIT;
+ }
+
+ /* Configure communication direction : 1Line */
+ if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
+ {
+ SPI_1LINE_TX(hspi);
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ }
+#endif /* USE_SPI_CRC */
+
+ if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
+ {
+ /* Enable TXE interrupt */
+ __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE));
+ }
+ else
+ {
+ /* Enable TXE and ERR interrupt */
+ __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
+ }
+
+ /* Check if the SPI is already enabled */
+ if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
+ {
+ /* Enable SPI peripheral */
+ __HAL_SPI_ENABLE(hspi);
+ }
+
+error :
+ __HAL_UNLOCK(hspi);
+ return errorcode;
+}
+
+/**
+ * @brief Receive an amount of data in non-blocking mode with Interrupt.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param pData: pointer to data buffer
+ * @param Size: amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
+{
+ HAL_StatusTypeDef errorcode = HAL_OK;
+
+ if((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
+ {
+ hspi->State = HAL_SPI_STATE_BUSY_RX;
+ /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
+ return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size);
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hspi);
+
+ if(hspi->State != HAL_SPI_STATE_READY)
+ {
+ errorcode = HAL_BUSY;
+ goto error;
+ }
+
+ if((pData == NULL) || (Size == 0U))
+ {
+ errorcode = HAL_ERROR;
+ goto error;
+ }
+
+ /* Set the transaction information */
+ hspi->State = HAL_SPI_STATE_BUSY_RX;
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->pRxBuffPtr = (uint8_t *)pData;
+ hspi->RxXferSize = Size;
+ hspi->RxXferCount = Size;
+
+ /* Init field not used in handle to zero */
+ hspi->pTxBuffPtr = (uint8_t *)NULL;
+ hspi->TxXferSize = 0U;
+ hspi->TxXferCount = 0U;
+ hspi->TxISR = NULL;
+
+ /* Set the function for IT treatment */
+ if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
+ {
+ hspi->RxISR = SPI_RxISR_16BIT;
+ }
+ else
+ {
+ hspi->RxISR = SPI_RxISR_8BIT;
+ }
+
+ /* Configure communication direction : 1Line */
+ if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
+ {
+ SPI_1LINE_RX(hspi);
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Enable TXE and ERR interrupt */
+ __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
+
+ /* Note : The SPI must be enabled after unlocking current process
+ to avoid the risk of SPI interrupt handle execution before current
+ process unlock */
+
+ /* Check if the SPI is already enabled */
+ if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
+ {
+ /* Enable SPI peripheral */
+ __HAL_SPI_ENABLE(hspi);
+ }
+
+error :
+ /* Process Unlocked */
+ __HAL_UNLOCK(hspi);
+ return errorcode;
+}
+
+/**
+ * @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param pTxData: pointer to transmission data buffer
+ * @param pRxData: pointer to reception data buffer
+ * @param Size: amount of data to be sent and received
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
+{
+ uint32_t tmp = 0U, tmp1 = 0U;
+ HAL_StatusTypeDef errorcode = HAL_OK;
+
+ /* Check Direction parameter */
+ assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
+
+ /* Process locked */
+ __HAL_LOCK(hspi);
+
+ tmp = hspi->State;
+ tmp1 = hspi->Init.Mode;
+
+ if(!((tmp == HAL_SPI_STATE_READY) || \
+ ((tmp1 == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp == HAL_SPI_STATE_BUSY_RX))))
+ {
+ errorcode = HAL_BUSY;
+ goto error;
+ }
+
+ if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0U))
+ {
+ errorcode = HAL_ERROR;
+ goto error;
+ }
+
+ /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
+ if(hspi->State == HAL_SPI_STATE_READY)
+ {
+ hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
+ }
+
+ /* Set the transaction information */
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->pTxBuffPtr = (uint8_t *)pTxData;
+ hspi->TxXferSize = Size;
+ hspi->TxXferCount = Size;
+ hspi->pRxBuffPtr = (uint8_t *)pRxData;
+ hspi->RxXferSize = Size;
+ hspi->RxXferCount = Size;
+
+ /* Set the function for IT treatment */
+ if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
+ {
+ hspi->RxISR = SPI_2linesRxISR_16BIT;
+ hspi->TxISR = SPI_2linesTxISR_16BIT;
+ }
+ else
+ {
+ hspi->RxISR = SPI_2linesRxISR_8BIT;
+ hspi->TxISR = SPI_2linesTxISR_8BIT;
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Enable TXE, RXNE and ERR interrupt */
+ __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
+
+ /* Check if the SPI is already enabled */
+ if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
+ {
+ /* Enable SPI peripheral */
+ __HAL_SPI_ENABLE(hspi);
+ }
+
+error :
+ /* Process Unlocked */
+ __HAL_UNLOCK(hspi);
+ return errorcode;
+}
+
+/**
+ * @brief Transmit an amount of data in non-blocking mode with DMA.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param pData: pointer to data buffer
+ * @param Size: amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
+{
+ HAL_StatusTypeDef errorcode = HAL_OK;
+
+ /* Check Direction parameter */
+ assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
+
+ /* Process Locked */
+ __HAL_LOCK(hspi);
+
+ if(hspi->State != HAL_SPI_STATE_READY)
+ {
+ errorcode = HAL_BUSY;
+ goto error;
+ }
+
+ if((pData == NULL) || (Size == 0U))
+ {
+ errorcode = HAL_ERROR;
+ goto error;
+ }
+
+ /* Set the transaction information */
+ hspi->State = HAL_SPI_STATE_BUSY_TX;
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->pTxBuffPtr = (uint8_t *)pData;
+ hspi->TxXferSize = Size;
+ hspi->TxXferCount = Size;
+
+ /* Init field not used in handle to zero */
+ hspi->pRxBuffPtr = (uint8_t *)NULL;
+ hspi->TxISR = NULL;
+ hspi->RxISR = NULL;
+ hspi->RxXferSize = 0U;
+ hspi->RxXferCount = 0U;
+
+ /* Configure communication direction : 1Line */
+ if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
+ {
+ SPI_1LINE_TX(hspi);
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Set the SPI TxDMA Half transfer complete callback */
+ hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt;
+
+ /* Set the SPI TxDMA transfer complete callback */
+ hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt;
+
+ /* Set the DMA error callback */
+ hspi->hdmatx->XferErrorCallback = SPI_DMAError;
+
+ /* Set the DMA AbortCpltCallback */
+ hspi->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the Tx DMA Stream */
+ HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
+
+ /* Check if the SPI is already enabled */
+ if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
+ {
+ /* Enable SPI peripheral */
+ __HAL_SPI_ENABLE(hspi);
+ }
+
+ /* Enable the SPI Error Interrupt Bit */
+ SET_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
+
+ /* Enable Tx DMA Request */
+ SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
+
+error :
+ /* Process Unlocked */
+ __HAL_UNLOCK(hspi);
+ return errorcode;
+}
+
+/**
+ * @brief Receive an amount of data in non-blocking mode with DMA.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param pData: pointer to data buffer
+ * @note When the CRC feature is enabled the pData Length must be Size + 1.
+ * @param Size: amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
+{
+ HAL_StatusTypeDef errorcode = HAL_OK;
+
+ if((hspi->Init.Direction == SPI_DIRECTION_2LINES)&&(hspi->Init.Mode == SPI_MODE_MASTER))
+ {
+ hspi->State = HAL_SPI_STATE_BUSY_RX;
+ /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
+ return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size);
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hspi);
+
+ if(hspi->State != HAL_SPI_STATE_READY)
+ {
+ errorcode = HAL_BUSY;
+ goto error;
+ }
+
+ if((pData == NULL) || (Size == 0U))
+ {
+ errorcode = HAL_ERROR;
+ goto error;
+ }
+
+ /* Set the transaction information */
+ hspi->State = HAL_SPI_STATE_BUSY_RX;
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->pRxBuffPtr = (uint8_t *)pData;
+ hspi->RxXferSize = Size;
+ hspi->RxXferCount = Size;
+
+ /*Init field not used in handle to zero */
+ hspi->RxISR = NULL;
+ hspi->TxISR = NULL;
+ hspi->TxXferSize = 0U;
+ hspi->TxXferCount = 0U;
+
+ /* Configure communication direction : 1Line */
+ if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
+ {
+ SPI_1LINE_RX(hspi);
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Set the SPI RxDMA Half transfer complete callback */
+ hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
+
+ /* Set the SPI Rx DMA transfer complete callback */
+ hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
+
+ /* Set the DMA error callback */
+ hspi->hdmarx->XferErrorCallback = SPI_DMAError;
+
+ /* Set the DMA AbortCpltCallback */
+ hspi->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the Rx DMA Stream */
+ HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);
+
+ /* Check if the SPI is already enabled */
+ if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
+ {
+ /* Enable SPI peripheral */
+ __HAL_SPI_ENABLE(hspi);
+ }
+
+ /* Enable the SPI Error Interrupt Bit */
+ SET_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
+
+ /* Enable Rx DMA Request */
+ SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
+
+error:
+ /* Process Unlocked */
+ __HAL_UNLOCK(hspi);
+ return errorcode;
+}
+
+/**
+ * @brief Transmit and Receive an amount of data in non-blocking mode with DMA.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param pTxData: pointer to transmission data buffer
+ * @param pRxData: pointer to reception data buffer
+ * @note When the CRC feature is enabled the pRxData Length must be Size + 1
+ * @param Size: amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
+{
+ uint32_t tmp = 0U, tmp1 = 0U;
+ HAL_StatusTypeDef errorcode = HAL_OK;
+
+ /* Check Direction parameter */
+ assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
+
+ /* Process locked */
+ __HAL_LOCK(hspi);
+
+ tmp = hspi->State;
+ tmp1 = hspi->Init.Mode;
+ if(!((tmp == HAL_SPI_STATE_READY) ||
+ ((tmp1 == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp == HAL_SPI_STATE_BUSY_RX))))
+ {
+ errorcode = HAL_BUSY;
+ goto error;
+ }
+
+ if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0U))
+ {
+ errorcode = HAL_ERROR;
+ goto error;
+ }
+
+ /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
+ if(hspi->State == HAL_SPI_STATE_READY)
+ {
+ hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
+ }
+
+ /* Set the transaction information */
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+ hspi->pTxBuffPtr = (uint8_t*)pTxData;
+ hspi->TxXferSize = Size;
+ hspi->TxXferCount = Size;
+ hspi->pRxBuffPtr = (uint8_t*)pRxData;
+ hspi->RxXferSize = Size;
+ hspi->RxXferCount = Size;
+
+ /* Init field not used in handle to zero */
+ hspi->RxISR = NULL;
+ hspi->TxISR = NULL;
+
+#if (USE_SPI_CRC != 0U)
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */
+ if(hspi->State == HAL_SPI_STATE_BUSY_RX)
+ {
+ /* Set the SPI Rx DMA Half transfer complete callback */
+ hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
+ hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
+ }
+ else
+ {
+ /* Set the SPI Tx/Rx DMA Half transfer complete callback */
+ hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt;
+ hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt;
+ }
+
+ /* Set the DMA error callback */
+ hspi->hdmarx->XferErrorCallback = SPI_DMAError;
+
+ /* Set the DMA AbortCpltCallback */
+ hspi->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the Rx DMA Stream */
+ HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);
+
+ /* Enable Rx DMA Request */
+ SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
+
+ /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing
+ is performed in DMA reception complete callback */
+ hspi->hdmatx->XferHalfCpltCallback = NULL;
+ hspi->hdmatx->XferCpltCallback = NULL;
+ hspi->hdmatx->XferErrorCallback = NULL;
+ hspi->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the Tx DMA Stream */
+ HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
+
+ /* Check if the SPI is already enabled */
+ if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
+ {
+ /* Enable SPI peripheral */
+ __HAL_SPI_ENABLE(hspi);
+ }
+ /* Enable the SPI Error Interrupt Bit */
+ SET_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
+
+ /* Enable Tx DMA Request */
+ SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
+
+error :
+ /* Process Unlocked */
+ __HAL_UNLOCK(hspi);
+ return errorcode;
+}
+
+/**
+ * @brief Abort ongoing transfer (blocking mode).
+ * @param hspi SPI handle.
+ * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx),
+ * started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable SPI Interrupts (depending of transfer direction)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
+ * @note Once transfer is aborted, the __HAL_SPI_CLEAR_OVRFLAG() macro must be called in user application
+ * before starting new SPI receive process.
+ * @retval HAL status
+*/
+HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi)
+{
+ __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
+
+ /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */
+ if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE))
+ {
+ hspi->TxISR = SPI_AbortTx_ISR;
+ }
+
+ if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE))
+ {
+ hspi->RxISR = SPI_AbortRx_ISR;
+ }
+
+ /* Clear ERRIE interrupts in case of DMA Mode */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
+
+ /* Disable the SPI DMA Tx or SPI DMA Rx request if enabled */
+ if ((HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) || (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)))
+ {
+ /* Abort the SPI DMA Tx channel : use blocking DMA Abort API (no callback) */
+ if(hspi->hdmatx != NULL)
+ {
+ /* Set the SPI DMA Abort callback :
+ will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */
+ hspi->hdmatx->XferAbortCallback = NULL;
+
+ /* Abort DMA Tx Handle linked to SPI Peripheral */
+ HAL_DMA_Abort(hspi->hdmatx);
+
+ /* Disable Tx DMA Request */
+ CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN));
+
+ /* Wait until TXE flag is set */
+ do
+ {
+ if(count-- == 0U)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ break;
+ }
+ }
+ while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
+ }
+ /* Abort the SPI DMA Rx channel : use blocking DMA Abort API (no callback) */
+ if(hspi->hdmarx != NULL)
+ {
+ /* Set the SPI DMA Abort callback :
+ will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */
+ hspi->hdmarx->XferAbortCallback = NULL;
+
+ /* Abort DMA Rx Handle linked to SPI Peripheral */
+ HAL_DMA_Abort(hspi->hdmarx);
+
+ /* Disable peripheral */
+ __HAL_SPI_DISABLE(hspi);
+
+ /* Disable Rx DMA Request */
+ CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXDMAEN));
+
+ }
+ }
+ /* Reset Tx and Rx transfer counters */
+ hspi->RxXferCount = 0U;
+ hspi->TxXferCount = 0U;
+
+ /* Reset errorCode */
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+
+ /* Clear the Error flags in the SR register */
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+
+ /* Restore hspi->state to ready */
+ hspi->State = HAL_SPI_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing transfer (Interrupt mode).
+ * @param hspi SPI handle.
+ * @note This procedure could be used for aborting any ongoing transfer (Tx and Rx),
+ * started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable SPI Interrupts (depending of transfer direction)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * - At abort completion, call user abort complete callback
+ * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
+ * considered as completed only when user abort complete callback is executed (not when exiting function).
+ * @note Once transfer is aborted, the __HAL_SPI_CLEAR_OVRFLAG() macro must be called in user application
+ * before starting new SPI receive process.
+ * @retval HAL status
+*/
+HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi)
+{
+ uint32_t abortcplt;
+
+ /* Change Rx and Tx Irq Handler to Disable TXEIE, RXNEIE and ERRIE interrupts */
+ if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE))
+ {
+ hspi->TxISR = SPI_AbortTx_ISR;
+ }
+
+ if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE))
+ {
+ hspi->RxISR = SPI_AbortRx_ISR;
+ }
+
+ /* Clear ERRIE interrupts in case of DMA Mode */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
+
+ abortcplt = 1U;
+
+ /* If DMA Tx and/or DMA Rx Handles are associated to SPI Handle, DMA Abort complete callbacks should be initialised
+ before any call to DMA Abort functions */
+ /* DMA Tx Handle is valid */
+ if(hspi->hdmatx != NULL)
+ {
+ /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
+ Otherwise, set it to NULL */
+ if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
+ {
+ hspi->hdmatx->XferAbortCallback = SPI_DMATxAbortCallback;
+ }
+ else
+ {
+ hspi->hdmatx->XferAbortCallback = NULL;
+ }
+ }
+ /* DMA Rx Handle is valid */
+ if(hspi->hdmarx != NULL)
+ {
+ /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
+ Otherwise, set it to NULL */
+ if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
+ {
+ hspi->hdmarx->XferAbortCallback = SPI_DMARxAbortCallback;
+ }
+ else
+ {
+ hspi->hdmarx->XferAbortCallback = NULL;
+ }
+ }
+
+ /* Disable the SPI DMA Tx or the SPI Rx request if enabled */
+ if((HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) && (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)))
+ {
+ /* Abort the SPI DMA Tx channel */
+ if(hspi->hdmatx != NULL)
+ {
+ /* Abort DMA Tx Handle linked to SPI Peripheral */
+ if(HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK)
+ {
+ hspi->hdmatx->XferAbortCallback = NULL;
+ }
+ else
+ {
+ abortcplt = 0U;
+ }
+ }
+ /* Abort the SPI DMA Rx channel */
+ if(hspi->hdmarx != NULL)
+ {
+ /* Abort DMA Rx Handle linked to SPI Peripheral */
+ if(HAL_DMA_Abort_IT(hspi->hdmarx)!= HAL_OK)
+ {
+ hspi->hdmarx->XferAbortCallback = NULL;
+ abortcplt = 1U;
+ }
+ else
+ {
+ abortcplt = 0U;
+ }
+ }
+ }
+
+ /* Disable the SPI DMA Tx or the SPI Rx request if enabled */
+ if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
+ {
+ /* Abort the SPI DMA Tx channel */
+ if(hspi->hdmatx != NULL)
+ {
+ /* Abort DMA Tx Handle linked to SPI Peripheral */
+ if(HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK)
+ {
+ hspi->hdmatx->XferAbortCallback = NULL;
+ }
+ else
+ {
+ abortcplt = 0U;
+ }
+ }
+ }
+ /* Disable the SPI DMA Tx or the SPI Rx request if enabled */
+ if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
+ {
+ /* Abort the SPI DMA Rx channel */
+ if(hspi->hdmarx != NULL)
+ {
+ /* Abort DMA Rx Handle linked to SPI Peripheral */
+ if(HAL_DMA_Abort_IT(hspi->hdmarx)!= HAL_OK)
+ {
+ hspi->hdmarx->XferAbortCallback = NULL;
+ }
+ else
+ {
+ abortcplt = 0U;
+ }
+ }
+ }
+
+ if(abortcplt == 1U)
+ {
+ /* Reset Tx and Rx transfer counters */
+ hspi->RxXferCount = 0U;
+ hspi->TxXferCount = 0U;
+
+ /* Reset errorCode */
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+
+ /* Clear the Error flags in the SR register */
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+
+ /* Restore hspi->State to Ready */
+ hspi->State = HAL_SPI_STATE_READY;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+ HAL_SPI_AbortCpltCallback(hspi);
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Pause the DMA Transfer.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for the specified SPI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi)
+{
+ /* Process Locked */
+ __HAL_LOCK(hspi);
+
+ /* Disable the SPI DMA Tx & Rx requests */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hspi);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Resume the DMA Transfer.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for the specified SPI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi)
+{
+ /* Process Locked */
+ __HAL_LOCK(hspi);
+
+ /* Enable the SPI DMA Tx & Rx requests */
+ SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hspi);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Stop the DMA Transfer.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for the specified SPI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi)
+{
+ /* The Lock is not implemented on this API to allow the user application
+ to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback():
+ when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
+ and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback()
+ */
+
+ /* Abort the SPI DMA tx Stream */
+ if(hspi->hdmatx != NULL)
+ {
+ HAL_DMA_Abort(hspi->hdmatx);
+ }
+ /* Abort the SPI DMA rx Stream */
+ if(hspi->hdmarx != NULL)
+ {
+ HAL_DMA_Abort(hspi->hdmarx);
+ }
+
+ /* Disable the SPI DMA Tx & Rx requests */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
+ hspi->State = HAL_SPI_STATE_READY;
+ return HAL_OK;
+}
+
+/**
+ * @brief Handle SPI interrupt request.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for the specified SPI module.
+ * @retval None
+ */
+void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi)
+{
+ uint32_t itsource = hspi->Instance->CR2;
+ uint32_t itflag = hspi->Instance->SR;
+
+ /* SPI in mode Receiver ----------------------------------------------------*/
+ if(((itflag & SPI_FLAG_OVR) == RESET) &&
+ ((itflag & SPI_FLAG_RXNE) != RESET) && ((itsource & SPI_IT_RXNE) != RESET))
+ {
+ hspi->RxISR(hspi);
+ return;
+ }
+
+ /* SPI in mode Transmitter -------------------------------------------------*/
+ if(((itflag & SPI_FLAG_TXE) != RESET) && ((itsource & SPI_IT_TXE) != RESET))
+ {
+ hspi->TxISR(hspi);
+ return;
+ }
+
+ /* SPI in Error Treatment --------------------------------------------------*/
+ if(((itflag & (SPI_FLAG_MODF | SPI_FLAG_OVR)) != RESET) && ((itsource & SPI_IT_ERR) != RESET))
+ {
+ /* SPI Overrun error interrupt occurred ----------------------------------*/
+ if((itflag & SPI_FLAG_OVR) != RESET)
+ {
+ if(hspi->State != HAL_SPI_STATE_BUSY_TX)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR);
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+ }
+ else
+ {
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+ return;
+ }
+ }
+
+ /* SPI Mode Fault error interrupt occurred -------------------------------*/
+ if((itflag & SPI_FLAG_MODF) != RESET)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF);
+ __HAL_SPI_CLEAR_MODFFLAG(hspi);
+ }
+
+ if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
+ {
+ /* Disable all interrupts */
+ __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE | SPI_IT_TXE | SPI_IT_ERR);
+
+ hspi->State = HAL_SPI_STATE_READY;
+ /* Disable the SPI DMA requests if enabled */
+ if ((HAL_IS_BIT_SET(itsource, SPI_CR2_TXDMAEN))||(HAL_IS_BIT_SET(itsource, SPI_CR2_RXDMAEN)))
+ {
+ CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN));
+
+ /* Abort the SPI DMA Rx channel */
+ if(hspi->hdmarx != NULL)
+ {
+ /* Set the SPI DMA Abort callback :
+ will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
+ hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError;
+ HAL_DMA_Abort_IT(hspi->hdmarx);
+ }
+ /* Abort the SPI DMA Tx channel */
+ if(hspi->hdmatx != NULL)
+ {
+ /* Set the SPI DMA Abort callback :
+ will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
+ hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError;
+ HAL_DMA_Abort_IT(hspi->hdmatx);
+ }
+ }
+ else
+ {
+ /* Call user error callback */
+ HAL_SPI_ErrorCallback(hspi);
+ }
+ }
+ return;
+ }
+}
+
+/**
+ * @brief Tx Transfer completed callback.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_TxCpltCallback should be implemented in the user file
+ */
+}
+
+/**
+ * @brief Rx Transfer completed callback.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_RxCpltCallback should be implemented in the user file
+ */
+}
+
+/**
+ * @brief Tx and Rx Transfer completed callback.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_TxRxCpltCallback should be implemented in the user file
+ */
+}
+
+/**
+ * @brief Tx Half Transfer completed callback.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_TxHalfCpltCallback should be implemented in the user file
+ */
+}
+
+/**
+ * @brief Rx Half Transfer completed callback.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file
+ */
+}
+
+/**
+ * @brief Tx and Rx Half Transfer callback.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file
+ */
+}
+
+/**
+ * @brief SPI error callback.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+ __weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_ErrorCallback should be implemented in the user file
+ */
+ /* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes
+ and user can use HAL_SPI_GetError() API to check the latest error occurred
+ */
+}
+
+/**
+ * @brief SPI Abort Complete callback.
+ * @param hspi SPI handle.
+ * @retval None
+ */
+__weak void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SPI_AbortCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions
+ * @brief SPI control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral State and Errors functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the SPI.
+ (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral
+ (+) HAL_SPI_GetError() check in run-time Errors occurring during communication
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the SPI handle state.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval SPI state
+ */
+HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi)
+{
+ /* Return SPI handle state */
+ return hspi->State;
+}
+
+/**
+ * @brief Return the SPI error code.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval SPI error code in bitmap format
+ */
+uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi)
+{
+ /* Return SPI ErrorCode */
+ return hspi->ErrorCode;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup SPI_Private_Functions
+ * @brief Private functions
+ * @{
+ */
+
+/**
+ * @brief DMA SPI transmit process complete callback.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
+{
+ SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+ uint32_t tickstart = 0U;
+
+ /* Init tickstart for timeout managment*/
+ tickstart = HAL_GetTick();
+
+ /* DMA Normal Mode */
+ if((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
+ {
+ /* Disable Tx DMA Request */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
+
+ /* Check the end of the transaction */
+ if(SPI_CheckFlag_BSY(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ }
+
+ /* Clear overrun flag in 2 Lines communication mode because received data is not read */
+ if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
+ {
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+ }
+
+ hspi->TxXferCount = 0U;
+ hspi->State = HAL_SPI_STATE_READY;
+
+ if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
+ {
+ HAL_SPI_ErrorCallback(hspi);
+ return;
+ }
+ }
+ HAL_SPI_TxCpltCallback(hspi);
+}
+
+/**
+ * @brief DMA SPI receive process complete callback.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
+{
+ SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+#if (USE_SPI_CRC != 0U)
+ uint32_t tickstart = 0U;
+ __IO uint16_t tmpreg = 0U;
+
+ /* Init tickstart for timeout management*/
+ tickstart = HAL_GetTick();
+#endif /* USE_SPI_CRC */
+
+ if((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
+ {
+#if (USE_SPI_CRC != 0U)
+ /* CRC handling */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ /* Wait until RXNE flag */
+ if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
+ {
+ /* Error on the CRC reception */
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+ }
+ /* Read CRC */
+ tmpreg = hspi->Instance->DR;
+ /* To avoid GCC warning */
+ UNUSED(tmpreg);
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Disable Rx/Tx DMA Request (done by default to handle the case master rx direction 2 lines) */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
+
+ /* Check the end of the transaction */
+ if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
+ {
+ /* Disable SPI peripheral */
+ __HAL_SPI_DISABLE(hspi);
+ }
+
+ hspi->RxXferCount = 0U;
+ hspi->State = HAL_SPI_STATE_READY;
+
+#if (USE_SPI_CRC != 0U)
+ /* Check if CRC error occurred */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
+ {
+ /* Check if CRC error is valid or not (workaround to be applied or not) */
+ if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+
+ /* Reset CRC Calculation */
+ SPI_RESET_CRC(hspi);
+ }
+ else
+ {
+ __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
+ }
+ }
+#endif /* USE_SPI_CRC */
+
+ if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
+ {
+ HAL_SPI_ErrorCallback(hspi);
+ return;
+ }
+ }
+ HAL_SPI_RxCpltCallback(hspi);
+}
+
+/**
+ * @brief DMA SPI transmit receive process complete callback.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)
+{
+ SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+ uint32_t tickstart = 0U;
+#if (USE_SPI_CRC != 0U)
+ __IO int16_t tmpreg = 0U;
+#endif /* USE_SPI_CRC */
+ /* Init tickstart for timeout management*/
+ tickstart = HAL_GetTick();
+
+ if((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
+ {
+#if (USE_SPI_CRC != 0U)
+ /* CRC handling */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ /* Wait the CRC data */
+ if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+ }
+ /* Read CRC to Flush DR and RXNE flag */
+ tmpreg = hspi->Instance->DR;
+ /* To avoid GCC warning */
+ UNUSED(tmpreg);
+ }
+#endif /* USE_SPI_CRC */
+ /* Check the end of the transaction */
+ if(SPI_CheckFlag_BSY(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ }
+
+ /* Disable Rx/Tx DMA Request */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
+
+ hspi->TxXferCount = 0U;
+ hspi->RxXferCount = 0U;
+ hspi->State = HAL_SPI_STATE_READY;
+
+#if (USE_SPI_CRC != 0U)
+ /* Check if CRC error occurred */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
+ {
+ /* Check if CRC error is valid or not (workaround to be applied or not) */
+ if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+
+ /* Reset CRC Calculation */
+ SPI_RESET_CRC(hspi);
+ }
+ else
+ {
+ __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
+ }
+ }
+#endif /* USE_SPI_CRC */
+
+ if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
+ {
+ HAL_SPI_ErrorCallback(hspi);
+ return;
+ }
+ }
+ HAL_SPI_TxRxCpltCallback(hspi);
+}
+
+/**
+ * @brief DMA SPI half transmit process complete callback.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma)
+{
+ SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+
+ HAL_SPI_TxHalfCpltCallback(hspi);
+}
+
+/**
+ * @brief DMA SPI half receive process complete callback
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma)
+{
+ SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+
+ HAL_SPI_RxHalfCpltCallback(hspi);
+}
+
+/**
+ * @brief DMA SPI half transmit receive process complete callback.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma)
+{
+ SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+
+ HAL_SPI_TxRxHalfCpltCallback(hspi);
+}
+
+/**
+ * @brief DMA SPI communication error callback.
+ * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SPI_DMAError(DMA_HandleTypeDef *hdma)
+{
+ SPI_HandleTypeDef* hspi = (SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+
+/* Stop the disable DMA transfer on SPI side */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
+
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
+ hspi->State = HAL_SPI_STATE_READY;
+ HAL_SPI_ErrorCallback(hspi);
+}
+
+/**
+ * @brief DMA SPI communication abort callback, when initiated by HAL services on Error
+ * (To be called at end of DMA Abort procedure following error occurrence).
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma)
+{
+ SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+ hspi->RxXferCount = 0U;
+ hspi->TxXferCount = 0U;
+
+ HAL_SPI_ErrorCallback(hspi);
+}
+
+/**
+ * @brief DMA SPI Tx communication abort callback, when initiated by user
+ * (To be called at end of DMA Tx Abort procedure following user abort request).
+ * @note When this callback is executed, User Abort complete call back is called only if no
+ * Abort still ongoing for Rx DMA Handle.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
+ SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+
+ hspi->hdmatx->XferAbortCallback = NULL;
+
+ /* Disable Tx DMA Request */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN );
+
+ /* Wait until TXE flag is set */
+ do
+ {
+ if(count-- == 0U)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ break;
+ }
+ }
+ while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
+
+ /* Check if an Abort process is still ongoing */
+ if(hspi->hdmarx != NULL)
+ {
+ if(hspi->hdmarx->XferAbortCallback != NULL)
+ {
+ return;
+ }
+ }
+
+ /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
+ hspi->RxXferCount = 0U;
+ hspi->TxXferCount = 0U;
+
+ /* Reset errorCode */
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+
+ /* Restore hspi->State to Ready */
+ hspi->State = HAL_SPI_STATE_READY;
+
+ /* Call user Abort complete callback */
+ HAL_SPI_AbortCpltCallback(hspi);
+}
+
+/**
+ * @brief DMA SPI Rx communication abort callback, when initiated by user
+ * (To be called at end of DMA Rx Abort procedure following user abort request).
+ * @note When this callback is executed, User Abort complete call back is called only if no
+ * Abort still ongoing for Tx DMA Handle.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+
+ /* Disable SPI Peripheral */
+ __HAL_SPI_DISABLE(hspi);
+
+ hspi->hdmarx->XferAbortCallback = NULL;
+
+ /* Disable Rx DMA Request */
+ CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
+
+ /* Check if an Abort process is still ongoing */
+ if(hspi->hdmatx != NULL)
+ {
+ if(hspi->hdmatx->XferAbortCallback != NULL)
+ {
+ return;
+ }
+ }
+
+ /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
+ hspi->RxXferCount = 0U;
+ hspi->TxXferCount = 0U;
+
+ /* Reset errorCode */
+ hspi->ErrorCode = HAL_SPI_ERROR_NONE;
+
+ /* Clear the Error flags in the SR register */
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+
+ /* Restore hspi->State to Ready */
+ hspi->State = HAL_SPI_STATE_READY;
+
+ /* Call user Abort complete callback */
+ HAL_SPI_AbortCpltCallback(hspi);
+}
+
+/**
+ * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
+{
+ /* Receive data in 8bit mode */
+ *hspi->pRxBuffPtr++ = *((__IO uint8_t *)&hspi->Instance->DR);
+ hspi->RxXferCount--;
+
+ /* check end of the reception */
+ if(hspi->RxXferCount == 0U)
+ {
+#if (USE_SPI_CRC != 0U)
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ hspi->RxISR = SPI_2linesRxISR_8BITCRC;
+ return;
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Disable RXNE interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
+
+ if(hspi->TxXferCount == 0U)
+ {
+ SPI_CloseRxTx_ISR(hspi);
+ }
+ }
+}
+
+#if (USE_SPI_CRC != 0U)
+/**
+ * @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
+{
+ __IO uint8_t tmpreg = 0U;
+
+ /* Read data register to flush CRC */
+ tmpreg = *((__IO uint8_t *)&hspi->Instance->DR);
+
+ /* To avoid GCC warning */
+
+ UNUSED(tmpreg);
+
+ /* Disable RXNE interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
+
+ if(hspi->TxXferCount == 0U)
+ {
+ SPI_CloseRxTx_ISR(hspi);
+ }
+}
+#endif /* USE_SPI_CRC */
+
+/**
+ * @brief Tx 8-bit handler for Transmit and Receive in Interrupt mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
+{
+ *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
+ hspi->TxXferCount--;
+
+ /* check the end of the transmission */
+ if(hspi->TxXferCount == 0U)
+ {
+#if (USE_SPI_CRC != 0U)
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+ __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
+ return;
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Disable TXE interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
+
+ if(hspi->RxXferCount == 0U)
+ {
+ SPI_CloseRxTx_ISR(hspi);
+ }
+ }
+}
+
+/**
+ * @brief Rx 16-bit handler for Transmit and Receive in Interrupt mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
+{
+ /* Receive data in 16 Bit mode */
+ *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
+ hspi->pRxBuffPtr += sizeof(uint16_t);
+ hspi->RxXferCount--;
+
+ if(hspi->RxXferCount == 0U)
+ {
+#if (USE_SPI_CRC != 0U)
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ hspi->RxISR = SPI_2linesRxISR_16BITCRC;
+ return;
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Disable RXNE interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
+
+ if(hspi->TxXferCount == 0U)
+ {
+ SPI_CloseRxTx_ISR(hspi);
+ }
+ }
+}
+
+#if (USE_SPI_CRC != 0U)
+/**
+ * @brief Manage the CRC 16-bit receive for Transmit and Receive in Interrupt mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
+{
+ /* Receive data in 16 Bit mode */
+ __IO uint16_t tmpreg = 0U;
+
+ /* Read data register to flush CRC */
+ tmpreg = hspi->Instance->DR;
+
+ /* To avoid GCC warning */
+ UNUSED(tmpreg);
+
+ /* Disable RXNE interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
+
+ SPI_CloseRxTx_ISR(hspi);
+}
+#endif /* USE_SPI_CRC */
+
+/**
+ * @brief Tx 16-bit handler for Transmit and Receive in Interrupt mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
+{
+ /* Transmit data in 16 Bit mode */
+ hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
+ hspi->pTxBuffPtr += sizeof(uint16_t);
+ hspi->TxXferCount--;
+
+ /* Enable CRC Transmission */
+ if(hspi->TxXferCount == 0U)
+ {
+#if (USE_SPI_CRC != 0U)
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+ __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
+ return;
+ }
+#endif /* USE_SPI_CRC */
+
+ /* Disable TXE interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
+
+ if(hspi->RxXferCount == 0U)
+ {
+ SPI_CloseRxTx_ISR(hspi);
+ }
+ }
+}
+
+#if (USE_SPI_CRC != 0U)
+/**
+ * @brief Manage the CRC 8-bit receive in Interrupt context.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
+{
+ __IO uint8_t tmpreg = 0U;
+
+ /* Read data register to flush CRC */
+ tmpreg = *((__IO uint8_t*)&hspi->Instance->DR);
+
+ /* To avoid GCC warning */
+ UNUSED(tmpreg);
+
+ SPI_CloseRx_ISR(hspi);
+}
+#endif /* USE_SPI_CRC */
+
+/**
+ * @brief Manage the receive 8-bit in Interrupt context.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
+{
+ *hspi->pRxBuffPtr++ = (*(__IO uint8_t *)&hspi->Instance->DR);
+ hspi->RxXferCount--;
+
+#if (USE_SPI_CRC != 0U)
+ /* Enable CRC Transmission */
+ if((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
+ {
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+ }
+#endif /* USE_SPI_CRC */
+
+ if(hspi->RxXferCount == 0U)
+ {
+#if (USE_SPI_CRC != 0U)
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ hspi->RxISR = SPI_RxISR_8BITCRC;
+ return;
+ }
+#endif /* USE_SPI_CRC */
+ SPI_CloseRx_ISR(hspi);
+ }
+}
+
+#if (USE_SPI_CRC != 0U)
+/**
+ * @brief Manage the CRC 16-bit receive in Interrupt context.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
+{
+ __IO uint16_t tmpreg = 0U;
+
+ /* Read data register to flush CRC */
+ tmpreg = hspi->Instance->DR;
+
+ /* To avoid GCC warning */
+ UNUSED(tmpreg);
+
+ /* Disable RXNE and ERR interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
+
+ SPI_CloseRx_ISR(hspi);
+}
+#endif /* USE_SPI_CRC */
+
+/**
+ * @brief Manage the 16-bit receive in Interrupt context.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
+{
+ *((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR;
+ hspi->pRxBuffPtr += sizeof(uint16_t);
+ hspi->RxXferCount--;
+
+#if (USE_SPI_CRC != 0U)
+ /* Enable CRC Transmission */
+ if((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
+ {
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+ }
+#endif /* USE_SPI_CRC */
+
+ if(hspi->RxXferCount == 0U)
+ {
+#if (USE_SPI_CRC != 0U)
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ hspi->RxISR = SPI_RxISR_16BITCRC;
+ return;
+ }
+#endif /* USE_SPI_CRC */
+ SPI_CloseRx_ISR(hspi);
+ }
+}
+
+/**
+ * @brief Handle the data 8-bit transmit in Interrupt mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
+{
+ *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
+ hspi->TxXferCount--;
+
+ if(hspi->TxXferCount == 0U)
+ {
+#if (USE_SPI_CRC != 0U)
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ /* Enable CRC Transmission */
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+ }
+#endif /* USE_SPI_CRC */
+ SPI_CloseTx_ISR(hspi);
+ }
+}
+
+/**
+ * @brief Handle the data 16-bit transmit in Interrupt mode.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
+{
+ /* Transmit data in 16 Bit mode */
+ hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
+ hspi->pTxBuffPtr += sizeof(uint16_t);
+ hspi->TxXferCount--;
+
+ if(hspi->TxXferCount == 0U)
+ {
+#if (USE_SPI_CRC != 0U)
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ /* Enable CRC Transmission */
+ SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
+ }
+#endif /* USE_SPI_CRC */
+ SPI_CloseTx_ISR(hspi);
+ }
+}
+
+/**
+ * @brief Handle SPI Communication Timeout.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param Flag: SPI flag to check
+ * @param State: flag state to check
+ * @param Timeout: Timeout duration
+ * @param Tickstart: tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout, uint32_t Tickstart)
+{
+ while((((hspi->Instance->SR & Flag) == (Flag)) ? SET : RESET) != State)
+ {
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if((Timeout == 0U) || ((HAL_GetTick()-Tickstart) >= Timeout))
+ {
+ /* Disable the SPI and reset the CRC: the CRC value should be cleared
+ on both master and slave sides in order to resynchronize the master
+ and slave for their respective CRC calculation */
+
+ /* Disable TXE, RXNE and ERR interrupts for the interrupt process */
+ __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
+
+ if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
+ {
+ /* Disable SPI peripheral */
+ __HAL_SPI_DISABLE(hspi);
+ }
+
+ /* Reset CRC Calculation */
+ if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
+ {
+ SPI_RESET_CRC(hspi);
+ }
+
+ hspi->State= HAL_SPI_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hspi);
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ return HAL_OK;
+}
+/**
+ * @brief Handle to check BSY flag before start a new transaction.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @param Timeout: Timeout duration
+ * @param Tickstart: tick start value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef SPI_CheckFlag_BSY(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart)
+{
+ /* Control the BSY flag */
+ if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ return HAL_TIMEOUT;
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Handle the end of the RXTX transaction.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi)
+{
+ uint32_t tickstart = 0U;
+ __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
+ /* Init tickstart for timeout managment*/
+ tickstart = HAL_GetTick();
+
+ /* Disable ERR interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
+
+ /* Wait until TXE flag is set */
+ do
+ {
+ if(count-- == 0U)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ break;
+ }
+ }
+ while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
+
+ /* Check the end of the transaction */
+ if(SPI_CheckFlag_BSY(hspi, SPI_DEFAULT_TIMEOUT, tickstart)!=HAL_OK)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ }
+
+ /* Clear overrun flag in 2 Lines communication mode because received is not read */
+ if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
+ {
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+ }
+
+#if (USE_SPI_CRC != 0U)
+ /* Check if CRC error occurred */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
+ {
+ /* Check if CRC error is valid or not (workaround to be applied or not) */
+ if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
+ {
+ hspi->State = HAL_SPI_STATE_READY;
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+
+ /* Reset CRC Calculation */
+ SPI_RESET_CRC(hspi);
+
+ HAL_SPI_ErrorCallback(hspi);
+ }
+ else
+ {
+ __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
+ }
+ }
+ else
+ {
+#endif /* USE_SPI_CRC */
+ if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
+ {
+ if(hspi->State == HAL_SPI_STATE_BUSY_RX)
+ {
+ hspi->State = HAL_SPI_STATE_READY;
+ HAL_SPI_RxCpltCallback(hspi);
+ }
+ else
+ {
+ hspi->State = HAL_SPI_STATE_READY;
+ HAL_SPI_TxRxCpltCallback(hspi);
+ }
+ }
+ else
+ {
+ hspi->State = HAL_SPI_STATE_READY;
+ HAL_SPI_ErrorCallback(hspi);
+ }
+#if (USE_SPI_CRC != 0U)
+ }
+#endif /* USE_SPI_CRC */
+}
+
+/**
+ * @brief Handle the end of the RX transaction.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi)
+{
+ /* Disable RXNE and ERR interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
+
+ /* Check the end of the transaction */
+ if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
+ {
+ /* Disable SPI peripheral */
+ __HAL_SPI_DISABLE(hspi);
+ }
+
+ /* Clear overrun flag in 2 Lines communication mode because received is not read */
+ if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
+ {
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+ }
+ hspi->State = HAL_SPI_STATE_READY;
+
+#if (USE_SPI_CRC != 0U)
+ /* Check if CRC error occurred */
+ if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
+ {
+ /* Check if CRC error is valid or not (workaround to be applied or not) */
+ if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
+
+ /* Reset CRC Calculation */
+ SPI_RESET_CRC(hspi);
+
+ HAL_SPI_ErrorCallback(hspi);
+ }
+ else
+ {
+ __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
+ }
+ }
+ else
+ {
+#endif /* USE_SPI_CRC */
+ if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
+ {
+ HAL_SPI_RxCpltCallback(hspi);
+ }
+ else
+ {
+ HAL_SPI_ErrorCallback(hspi);
+ }
+#if (USE_SPI_CRC != 0U)
+ }
+#endif /* USE_SPI_CRC */
+}
+
+/**
+ * @brief Handle the end of the TX transaction.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi)
+{
+ uint32_t tickstart = 0U;
+ __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
+
+ /* Init tickstart for timeout management*/
+ tickstart = HAL_GetTick();
+
+ /* Wait until TXE flag is set */
+ do
+ {
+ if(count-- == 0U)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ break;
+ }
+ }
+ while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
+
+ /* Disable TXE and ERR interrupt */
+ __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
+
+ /* Check Busy flag */
+ if(SPI_CheckFlag_BSY(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ }
+
+ /* Clear overrun flag in 2 Lines communication mode because received is not read */
+ if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
+ {
+ __HAL_SPI_CLEAR_OVRFLAG(hspi);
+ }
+
+ hspi->State = HAL_SPI_STATE_READY;
+ if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
+ {
+ HAL_SPI_ErrorCallback(hspi);
+ }
+ else
+ {
+ HAL_SPI_TxCpltCallback(hspi);
+ }
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @brief Handle abort a Tx or Rx transaction.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi)
+{
+ __IO uint32_t tmpreg = 0U;
+ __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
+
+ /* Wait until TXE flag is set */
+ do
+ {
+ if(count-- == 0U)
+ {
+ SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
+ break;
+ }
+ }
+ while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
+
+ /* Disable SPI Peripheral */
+ __HAL_SPI_DISABLE(hspi);
+
+ /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */
+ CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE | SPI_CR2_RXNEIE | SPI_CR2_ERRIE));
+
+ /* Flush DR Register */
+ tmpreg = (*(__IO uint32_t *)&hspi->Instance->DR);
+
+ /* To avoid GCC warning */
+ UNUSED(tmpreg);
+}
+
+/**
+ * @brief Handle abort a Tx or Rx transaction.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval None
+ */
+static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi)
+{
+ /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */
+ CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE | SPI_CR2_RXNEIE | SPI_CR2_ERRIE));
+
+ /* Disable SPI Peripheral */
+ __HAL_SPI_DISABLE(hspi);
+}
+
+/**
+ * @brief Checks if encountered CRC error could be corresponding to wrongly detected errors
+ * according to SPI instance, Device type, and revision ID.
+ * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
+ * the configuration information for SPI module.
+ * @retval CRC error validity (SPI_INVALID_CRC_ERROR or SPI_VALID_CRC_ERROR).
+*/
+__weak uint8_t SPI_ISCRCErrorValid(SPI_HandleTypeDef *hspi)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hspi);
+
+ return (SPI_VALID_CRC_ERROR);
+}
+/**
+ * @}
+ */
+#endif /* HAL_SPI_MODULE_ENABLED */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/