diff options
author | Kevin O'Connor <kevin@koconnor.net> | 2018-04-30 11:22:16 -0400 |
---|---|---|
committer | Kevin O'Connor <kevin@koconnor.net> | 2018-04-30 11:44:53 -0400 |
commit | 15248706ae3950ce89ea595c72349b3738983f41 (patch) | |
tree | a0bc14c73de7a0844c4a3a43381bc93334fa3dbb /klippy/stepcompress.c | |
parent | 8e1b516eb6e47eb3aa295f2b872fa60a530274e1 (diff) | |
download | kutter-15248706ae3950ce89ea595c72349b3738983f41.tar.gz kutter-15248706ae3950ce89ea595c72349b3738983f41.tar.xz kutter-15248706ae3950ce89ea595c72349b3738983f41.zip |
chelper: Move the host C code to a new klippy/chelper/ directory
Move the C code out of the main klippy/ directory and into its own
directory. This reduces the clutter in the main klippy directory.
Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
Diffstat (limited to 'klippy/stepcompress.c')
-rw-r--r-- | klippy/stepcompress.c | 852 |
1 files changed, 0 insertions, 852 deletions
diff --git a/klippy/stepcompress.c b/klippy/stepcompress.c deleted file mode 100644 index 6c5f766f..00000000 --- a/klippy/stepcompress.c +++ /dev/null @@ -1,852 +0,0 @@ -// Stepper pulse schedule compression -// -// Copyright (C) 2016,2017 Kevin O'Connor <kevin@koconnor.net> -// -// This file may be distributed under the terms of the GNU GPLv3 license. -// -// The goal of this code is to take a series of scheduled stepper -// pulse times and compress them into a handful of commands that can -// be efficiently transmitted and executed on a microcontroller (mcu). -// The mcu accepts step pulse commands that take interval, count, and -// add parameters such that 'count' pulses occur, with each step event -// calculating the next step event time using: -// next_wake_time = last_wake_time + interval; interval += add -// This code is writtin in C (instead of python) for processing -// efficiency - the repetitive integer math is vastly faster in C. - -#include <math.h> // sqrt -#include <stddef.h> // offsetof -#include <stdint.h> // uint32_t -#include <stdio.h> // fprintf -#include <stdlib.h> // malloc -#include <string.h> // memset -#include "pyhelper.h" // errorf -#include "serialqueue.h" // struct queue_message - -#define CHECK_LINES 1 -#define QUEUE_START_SIZE 1024 - -struct stepcompress { - // Buffer management - uint32_t *queue, *queue_end, *queue_pos, *queue_next; - // Internal tracking - uint32_t max_error; - double mcu_time_offset, mcu_freq; - // Message generation - uint64_t last_step_clock, homing_clock; - struct list_head msg_queue; - uint32_t queue_step_msgid, set_next_step_dir_msgid, oid; - int sdir, invert_sdir; -}; - - -/**************************************************************** - * Step compression - ****************************************************************/ - -#define DIV_UP(n,d) (((n) + (d) - 1) / (d)) - -static inline int32_t -idiv_up(int32_t n, int32_t d) -{ - return (n>=0) ? DIV_UP(n,d) : (n/d); -} - -static inline int32_t -idiv_down(int32_t n, int32_t d) -{ - return (n>=0) ? (n/d) : (n - d + 1) / d; -} - -struct points { - int32_t minp, maxp; -}; - -// Given a requested step time, return the minimum and maximum -// acceptable times -static inline struct points -minmax_point(struct stepcompress *sc, uint32_t *pos) -{ - uint32_t lsc = sc->last_step_clock, point = *pos - lsc; - uint32_t prevpoint = pos > sc->queue_pos ? *(pos-1) - lsc : 0; - uint32_t max_error = (point - prevpoint) / 2; - if (max_error > sc->max_error) - max_error = sc->max_error; - return (struct points){ point - max_error, point }; -} - -// The maximum add delta between two valid quadratic sequences of the -// form "add*count*(count-1)/2 + interval*count" is "(6 + 4*sqrt(2)) * -// maxerror / (count*count)". The "6 + 4*sqrt(2)" is 11.65685, but -// using 11 works well in practice. -#define QUADRATIC_DEV 11 - -struct step_move { - uint32_t interval; - uint16_t count; - int16_t add; -}; - -// Find a 'step_move' that covers a series of step times -static struct step_move -compress_bisect_add(struct stepcompress *sc) -{ - uint32_t *qlast = sc->queue_next; - if (qlast > sc->queue_pos + 65535) - qlast = sc->queue_pos + 65535; - struct points point = minmax_point(sc, sc->queue_pos); - int32_t outer_mininterval = point.minp, outer_maxinterval = point.maxp; - int32_t add = 0, minadd = -0x8000, maxadd = 0x7fff; - int32_t bestinterval = 0, bestcount = 1, bestadd = 1, bestreach = INT32_MIN; - int32_t zerointerval = 0, zerocount = 0; - - for (;;) { - // Find longest valid sequence with the given 'add' - struct points nextpoint; - int32_t nextmininterval = outer_mininterval; - int32_t nextmaxinterval = outer_maxinterval, interval = nextmaxinterval; - int32_t nextcount = 1; - for (;;) { - nextcount++; - if (&sc->queue_pos[nextcount-1] >= qlast) { - int32_t count = nextcount - 1; - return (struct step_move){ interval, count, add }; - } - nextpoint = minmax_point(sc, sc->queue_pos + nextcount - 1); - int32_t nextaddfactor = nextcount*(nextcount-1)/2; - int32_t c = add*nextaddfactor; - if (nextmininterval*nextcount < nextpoint.minp - c) - nextmininterval = DIV_UP(nextpoint.minp - c, nextcount); - if (nextmaxinterval*nextcount > nextpoint.maxp - c) - nextmaxinterval = (nextpoint.maxp - c) / nextcount; - if (nextmininterval > nextmaxinterval) - break; - interval = nextmaxinterval; - } - - // Check if this is the best sequence found so far - int32_t count = nextcount - 1, addfactor = count*(count-1)/2; - int32_t reach = add*addfactor + interval*count; - if (reach > bestreach - || (reach == bestreach && interval > bestinterval)) { - bestinterval = interval; - bestcount = count; - bestadd = add; - bestreach = reach; - if (!add) { - zerointerval = interval; - zerocount = count; - } - if (count > 0x200) - // No 'add' will improve sequence; avoid integer overflow - break; - } - - // Check if a greater or lesser add could extend the sequence - int32_t nextaddfactor = nextcount*(nextcount-1)/2; - int32_t nextreach = add*nextaddfactor + interval*nextcount; - if (nextreach < nextpoint.minp) { - minadd = add + 1; - outer_maxinterval = nextmaxinterval; - } else { - maxadd = add - 1; - outer_mininterval = nextmininterval; - } - - // The maximum valid deviation between two quadratic sequences - // can be calculated and used to further limit the add range. - if (count > 1) { - int32_t errdelta = sc->max_error*QUADRATIC_DEV / (count*count); - if (minadd < add - errdelta) - minadd = add - errdelta; - if (maxadd > add + errdelta) - maxadd = add + errdelta; - } - - // See if next point would further limit the add range - int32_t c = outer_maxinterval * nextcount; - if (minadd*nextaddfactor < nextpoint.minp - c) - minadd = idiv_up(nextpoint.minp - c, nextaddfactor); - c = outer_mininterval * nextcount; - if (maxadd*nextaddfactor > nextpoint.maxp - c) - maxadd = idiv_down(nextpoint.maxp - c, nextaddfactor); - - // Bisect valid add range and try again with new 'add' - if (minadd > maxadd) - break; - add = maxadd - (maxadd - minadd) / 4; - } - if (zerocount + zerocount/16 >= bestcount) - // Prefer add=0 if it's similar to the best found sequence - return (struct step_move){ zerointerval, zerocount, 0 }; - return (struct step_move){ bestinterval, bestcount, bestadd }; -} - - -/**************************************************************** - * Step compress checking - ****************************************************************/ - -#define ERROR_RET -989898989 - -// Verify that a given 'step_move' matches the actual step times -static int -check_line(struct stepcompress *sc, struct step_move move) -{ - if (!CHECK_LINES) - return 0; - if (!move.count || (!move.interval && !move.add && move.count > 1) - || move.interval >= 0x80000000) { - errorf("stepcompress o=%d i=%d c=%d a=%d: Invalid sequence" - , sc->oid, move.interval, move.count, move.add); - return ERROR_RET; - } - uint32_t interval = move.interval, p = 0; - uint16_t i; - for (i=0; i<move.count; i++) { - struct points point = minmax_point(sc, sc->queue_pos + i); - p += interval; - if (p < point.minp || p > point.maxp) { - errorf("stepcompress o=%d i=%d c=%d a=%d: Point %d: %d not in %d:%d" - , sc->oid, move.interval, move.count, move.add - , i+1, p, point.minp, point.maxp); - return ERROR_RET; - } - if (interval >= 0x80000000) { - errorf("stepcompress o=%d i=%d c=%d a=%d:" - " Point %d: interval overflow %d" - , sc->oid, move.interval, move.count, move.add - , i+1, interval); - return ERROR_RET; - } - interval += move.add; - } - return 0; -} - - -/**************************************************************** - * Step compress interface - ****************************************************************/ - -// Allocate a new 'stepcompress' object -struct stepcompress * -stepcompress_alloc(uint32_t max_error, uint32_t queue_step_msgid - , uint32_t set_next_step_dir_msgid, uint32_t invert_sdir - , uint32_t oid) -{ - struct stepcompress *sc = malloc(sizeof(*sc)); - memset(sc, 0, sizeof(*sc)); - sc->max_error = max_error; - list_init(&sc->msg_queue); - sc->queue_step_msgid = queue_step_msgid; - sc->set_next_step_dir_msgid = set_next_step_dir_msgid; - sc->oid = oid; - sc->sdir = -1; - sc->invert_sdir = !!invert_sdir; - return sc; -} - -// Free memory associated with a 'stepcompress' object -void -stepcompress_free(struct stepcompress *sc) -{ - if (!sc) - return; - free(sc->queue); - message_queue_free(&sc->msg_queue); - free(sc); -} - -// Convert previously scheduled steps into commands for the mcu -static int -stepcompress_flush(struct stepcompress *sc, uint64_t move_clock) -{ - if (sc->queue_pos >= sc->queue_next) - return 0; - while (sc->last_step_clock < move_clock) { - struct step_move move = compress_bisect_add(sc); - int ret = check_line(sc, move); - if (ret) - return ret; - - uint32_t msg[5] = { - sc->queue_step_msgid, sc->oid, move.interval, move.count, move.add - }; - struct queue_message *qm = message_alloc_and_encode(msg, 5); - qm->min_clock = qm->req_clock = sc->last_step_clock; - int32_t addfactor = move.count*(move.count-1)/2; - uint32_t ticks = move.add*addfactor + move.interval*move.count; - sc->last_step_clock += ticks; - if (sc->homing_clock) - // When homing, all steps should be sent prior to homing_clock - qm->min_clock = qm->req_clock = sc->homing_clock; - list_add_tail(&qm->node, &sc->msg_queue); - - if (sc->queue_pos + move.count >= sc->queue_next) { - sc->queue_pos = sc->queue_next = sc->queue; - break; - } - sc->queue_pos += move.count; - } - return 0; -} - -// Generate a queue_step for a step far in the future from the last step -static int -stepcompress_flush_far(struct stepcompress *sc, uint64_t abs_step_clock) -{ - uint32_t msg[5] = { - sc->queue_step_msgid, sc->oid, abs_step_clock - sc->last_step_clock, 1, 0 - }; - struct queue_message *qm = message_alloc_and_encode(msg, 5); - qm->min_clock = sc->last_step_clock; - sc->last_step_clock = qm->req_clock = abs_step_clock; - if (sc->homing_clock) - // When homing, all steps should be sent prior to homing_clock - qm->min_clock = qm->req_clock = sc->homing_clock; - list_add_tail(&qm->node, &sc->msg_queue); - return 0; -} - -// Send the set_next_step_dir command -static int -set_next_step_dir(struct stepcompress *sc, int sdir) -{ - if (sc->sdir == sdir) - return 0; - sc->sdir = sdir; - int ret = stepcompress_flush(sc, UINT64_MAX); - if (ret) - return ret; - uint32_t msg[3] = { - sc->set_next_step_dir_msgid, sc->oid, sdir ^ sc->invert_sdir - }; - struct queue_message *qm = message_alloc_and_encode(msg, 3); - qm->req_clock = sc->homing_clock ?: sc->last_step_clock; - list_add_tail(&qm->node, &sc->msg_queue); - return 0; -} - -// Reset the internal state of the stepcompress object -int -stepcompress_reset(struct stepcompress *sc, uint64_t last_step_clock) -{ - int ret = stepcompress_flush(sc, UINT64_MAX); - if (ret) - return ret; - sc->last_step_clock = last_step_clock; - sc->sdir = -1; - return 0; -} - -// Indicate the stepper is in homing mode (or done homing if zero) -int -stepcompress_set_homing(struct stepcompress *sc, uint64_t homing_clock) -{ - int ret = stepcompress_flush(sc, UINT64_MAX); - if (ret) - return ret; - sc->homing_clock = homing_clock; - return 0; -} - -// Queue an mcu command to go out in order with stepper commands -int -stepcompress_queue_msg(struct stepcompress *sc, uint32_t *data, int len) -{ - int ret = stepcompress_flush(sc, UINT64_MAX); - if (ret) - return ret; - - struct queue_message *qm = message_alloc_and_encode(data, len); - qm->req_clock = sc->homing_clock ?: sc->last_step_clock; - list_add_tail(&qm->node, &sc->msg_queue); - return 0; -} - -// Set the conversion rate of 'print_time' to mcu clock -static void -stepcompress_set_time(struct stepcompress *sc - , double time_offset, double mcu_freq) -{ - sc->mcu_time_offset = time_offset; - sc->mcu_freq = mcu_freq; -} - - -/**************************************************************** - * Queue management - ****************************************************************/ - -struct queue_append { - struct stepcompress *sc; - uint32_t *qnext, *qend, last_step_clock_32; - double clock_offset; -}; - -// Maximium clock delta between messages in the queue -#define CLOCK_DIFF_MAX (3<<28) - -// Create a cursor for inserting clock times into the queue -static inline struct queue_append -queue_append_start(struct stepcompress *sc, double print_time, double adjust) -{ - double print_clock = (print_time - sc->mcu_time_offset) * sc->mcu_freq; - return (struct queue_append) { - .sc = sc, .qnext = sc->queue_next, .qend = sc->queue_end, - .last_step_clock_32 = sc->last_step_clock, - .clock_offset = (print_clock - (double)sc->last_step_clock) + adjust }; -} - -// Finalize a cursor created with queue_append_start() -static inline void -queue_append_finish(struct queue_append qa) -{ - qa.sc->queue_next = qa.qnext; -} - -// Slow path for queue_append() -static int -queue_append_slow(struct stepcompress *sc, double rel_sc) -{ - uint64_t abs_step_clock = (uint64_t)rel_sc + sc->last_step_clock; - if (abs_step_clock >= sc->last_step_clock + CLOCK_DIFF_MAX) { - // Avoid integer overflow on steps far in the future - int ret = stepcompress_flush(sc, abs_step_clock - CLOCK_DIFF_MAX + 1); - if (ret) - return ret; - - if (abs_step_clock >= sc->last_step_clock + CLOCK_DIFF_MAX) - return stepcompress_flush_far(sc, abs_step_clock); - } - - if (sc->queue_next - sc->queue_pos > 65535 + 2000) { - // No point in keeping more than 64K steps in memory - uint32_t flush = *(sc->queue_next-65535) - (uint32_t)sc->last_step_clock; - int ret = stepcompress_flush(sc, sc->last_step_clock + flush); - if (ret) - return ret; - } - - if (sc->queue_next >= sc->queue_end) { - // Make room in the queue - int in_use = sc->queue_next - sc->queue_pos; - if (sc->queue_pos > sc->queue) { - // Shuffle the internal queue to avoid having to allocate more ram - memmove(sc->queue, sc->queue_pos, in_use * sizeof(*sc->queue)); - } else { - // Expand the internal queue of step times - int alloc = sc->queue_end - sc->queue; - if (!alloc) - alloc = QUEUE_START_SIZE; - while (in_use >= alloc) - alloc *= 2; - sc->queue = realloc(sc->queue, alloc * sizeof(*sc->queue)); - sc->queue_end = sc->queue + alloc; - } - sc->queue_pos = sc->queue; - sc->queue_next = sc->queue + in_use; - } - - *sc->queue_next++ = abs_step_clock; - return 0; -} - -// Add a clock time to the queue (flushing the queue if needed) -static inline int -queue_append(struct queue_append *qa, double step_clock) -{ - double rel_sc = step_clock + qa->clock_offset; - if (likely(!(qa->qnext >= qa->qend || rel_sc >= (double)CLOCK_DIFF_MAX))) { - *qa->qnext++ = qa->last_step_clock_32 + (uint32_t)rel_sc; - return 0; - } - // Call queue_append_slow() to handle queue expansion and integer overflow - struct stepcompress *sc = qa->sc; - uint64_t old_last_step_clock = sc->last_step_clock; - sc->queue_next = qa->qnext; - int ret = queue_append_slow(sc, rel_sc); - if (ret) - return ret; - qa->qnext = sc->queue_next; - qa->qend = sc->queue_end; - qa->last_step_clock_32 = sc->last_step_clock; - qa->clock_offset -= sc->last_step_clock - old_last_step_clock; - return 0; -} - - -/**************************************************************** - * Motion to step conversions - ****************************************************************/ - -// Common suffixes: _sd is step distance (a unit length the same -// distance the stepper moves on each step), _sv is step velocity (in -// units of step distance per time), _sd2 is step distance squared, _r -// is ratio (scalar usually between 0.0 and 1.0). Times are in -// seconds and acceleration is in units of step distance per second -// squared. - -// Wrapper around sqrt() to handle small negative numbers -static double -_safe_sqrt(double v) -{ - // Due to floating point truncation, it's possible to get a small - // negative number - treat it as zero. - if (v < -0.001) - errorf("safe_sqrt of %.9f", v); - return 0.; -} -static inline double safe_sqrt(double v) { - return likely(v >= 0.) ? sqrt(v) : _safe_sqrt(v); -} - -// Schedule a step event at the specified step_clock time -int32_t -stepcompress_push(struct stepcompress *sc, double print_time, int32_t sdir) -{ - int ret = set_next_step_dir(sc, !!sdir); - if (ret) - return ret; - struct queue_append qa = queue_append_start(sc, print_time, 0.5); - ret = queue_append(&qa, 0.); - if (ret) - return ret; - queue_append_finish(qa); - return sdir ? 1 : -1; -} - -// Schedule 'steps' number of steps at constant acceleration. If -// acceleration is zero (ie, constant velocity) it uses the formula: -// step_time = print_time + step_num/start_sv -// Otherwise it uses the formula: -// step_time = (print_time + sqrt(2*step_num/accel + (start_sv/accel)**2) -// - start_sv/accel) -int32_t -stepcompress_push_const( - struct stepcompress *sc, double print_time - , double step_offset, double steps, double start_sv, double accel) -{ - // Calculate number of steps to take - int sdir = 1; - if (steps < 0) { - sdir = 0; - steps = -steps; - step_offset = -step_offset; - } - int count = steps + .5 - step_offset; - if (count <= 0 || count > 10000000) { - if (count && steps) { - errorf("push_const invalid count %d %f %f %f %f %f" - , sc->oid, print_time, step_offset, steps - , start_sv, accel); - return ERROR_RET; - } - return 0; - } - int ret = set_next_step_dir(sc, sdir); - if (ret) - return ret; - int res = sdir ? count : -count; - - // Calculate each step time - if (!accel) { - // Move at constant velocity (zero acceleration) - struct queue_append qa = queue_append_start(sc, print_time, .5); - double inv_cruise_sv = sc->mcu_freq / start_sv; - double pos = (step_offset + .5) * inv_cruise_sv; - while (count--) { - ret = queue_append(&qa, pos); - if (ret) - return ret; - pos += inv_cruise_sv; - } - queue_append_finish(qa); - } else { - // Move with constant acceleration - double inv_accel = 1. / accel; - double accel_time = start_sv * inv_accel * sc->mcu_freq; - struct queue_append qa = queue_append_start( - sc, print_time, 0.5 - accel_time); - double accel_multiplier = 2. * inv_accel * sc->mcu_freq * sc->mcu_freq; - double pos = (step_offset + .5)*accel_multiplier + accel_time*accel_time; - while (count--) { - double v = safe_sqrt(pos); - int ret = queue_append(&qa, accel_multiplier >= 0. ? v : -v); - if (ret) - return ret; - pos += accel_multiplier; - } - queue_append_finish(qa); - } - return res; -} - -// Schedule steps using delta kinematics -static int32_t -_stepcompress_push_delta( - struct stepcompress *sc, int sdir - , double print_time, double move_sd, double start_sv, double accel - , double height, double startxy_sd, double arm_sd, double movez_r) -{ - // Calculate number of steps to take - double movexy_r = movez_r ? sqrt(1. - movez_r*movez_r) : 1.; - double arm_sd2 = arm_sd * arm_sd; - double endxy_sd = startxy_sd - movexy_r*move_sd; - double end_height = safe_sqrt(arm_sd2 - endxy_sd*endxy_sd); - int count = (end_height + movez_r*move_sd - height) * (sdir ? 1. : -1.) + .5; - if (count <= 0 || count > 10000000) { - if (count) { - errorf("push_delta invalid count %d %d %f %f %f %f %f %f %f %f" - , sc->oid, count, print_time, move_sd, start_sv, accel - , height, startxy_sd, arm_sd, movez_r); - return ERROR_RET; - } - return 0; - } - int ret = set_next_step_dir(sc, sdir); - if (ret) - return ret; - int res = sdir ? count : -count; - - // Calculate each step time - height += (sdir ? .5 : -.5); - if (!accel) { - // Move at constant velocity (zero acceleration) - struct queue_append qa = queue_append_start(sc, print_time, .5); - double inv_cruise_sv = sc->mcu_freq / start_sv; - if (!movez_r) { - // Optimized case for common XY only moves (no Z movement) - while (count--) { - double v = safe_sqrt(arm_sd2 - height*height); - double pos = startxy_sd + (sdir ? -v : v); - int ret = queue_append(&qa, pos * inv_cruise_sv); - if (ret) - return ret; - height += (sdir ? 1. : -1.); - } - } else if (!movexy_r) { - // Optimized case for Z only moves - double pos = ((sdir ? height-end_height : end_height-height) - * inv_cruise_sv); - while (count--) { - int ret = queue_append(&qa, pos); - if (ret) - return ret; - pos += inv_cruise_sv; - } - } else { - // General case (handles XY+Z moves) - double start_pos = movexy_r*startxy_sd, zoffset = movez_r*startxy_sd; - while (count--) { - double relheight = movexy_r*height - zoffset; - double v = safe_sqrt(arm_sd2 - relheight*relheight); - double pos = start_pos + movez_r*height + (sdir ? -v : v); - int ret = queue_append(&qa, pos * inv_cruise_sv); - if (ret) - return ret; - height += (sdir ? 1. : -1.); - } - } - queue_append_finish(qa); - } else { - // Move with constant acceleration - double start_pos = movexy_r*startxy_sd, zoffset = movez_r*startxy_sd; - double inv_accel = 1. / accel; - start_pos += 0.5 * start_sv*start_sv * inv_accel; - struct queue_append qa = queue_append_start( - sc, print_time, 0.5 - start_sv * inv_accel * sc->mcu_freq); - double accel_multiplier = 2. * inv_accel * sc->mcu_freq * sc->mcu_freq; - while (count--) { - double relheight = movexy_r*height - zoffset; - double v = safe_sqrt(arm_sd2 - relheight*relheight); - double pos = start_pos + movez_r*height + (sdir ? -v : v); - v = safe_sqrt(pos * accel_multiplier); - int ret = queue_append(&qa, accel_multiplier >= 0. ? v : -v); - if (ret) - return ret; - height += (sdir ? 1. : -1.); - } - queue_append_finish(qa); - } - return res; -} - -int32_t -stepcompress_push_delta( - struct stepcompress *sc, double print_time, double move_sd - , double start_sv, double accel - , double height, double startxy_sd, double arm_sd, double movez_r) -{ - double reversexy_sd = startxy_sd + arm_sd*movez_r; - if (reversexy_sd <= 0.) - // All steps are in down direction - return _stepcompress_push_delta( - sc, 0, print_time, move_sd, start_sv, accel - , height, startxy_sd, arm_sd, movez_r); - double movexy_r = movez_r ? sqrt(1. - movez_r*movez_r) : 1.; - if (reversexy_sd >= move_sd * movexy_r) - // All steps are in up direction - return _stepcompress_push_delta( - sc, 1, print_time, move_sd, start_sv, accel - , height, startxy_sd, arm_sd, movez_r); - // Steps in both up and down direction - int res1 = _stepcompress_push_delta( - sc, 1, print_time, reversexy_sd / movexy_r, start_sv, accel - , height, startxy_sd, arm_sd, movez_r); - if (res1 == ERROR_RET) - return res1; - int res2 = _stepcompress_push_delta( - sc, 0, print_time, move_sd, start_sv, accel - , height + res1, startxy_sd, arm_sd, movez_r); - if (res2 == ERROR_RET) - return res2; - return res1 + res2; -} - - -/**************************************************************** - * Step compress synchronization - ****************************************************************/ - -// The steppersync object is used to synchronize the output of mcu -// step commands. The mcu can only queue a limited number of step -// commands - this code tracks when items on the mcu step queue become -// free so that new commands can be transmitted. It also ensures the -// mcu step queue is ordered between steppers so that no stepper -// starves the other steppers of space in the mcu step queue. - -struct steppersync { - // Serial port - struct serialqueue *sq; - struct command_queue *cq; - // Storage for associated stepcompress objects - struct stepcompress **sc_list; - int sc_num; - // Storage for list of pending move clocks - uint64_t *move_clocks; - int num_move_clocks; -}; - -// Allocate a new 'steppersync' object -struct steppersync * -steppersync_alloc(struct serialqueue *sq, struct stepcompress **sc_list - , int sc_num, int move_num) -{ - struct steppersync *ss = malloc(sizeof(*ss)); - memset(ss, 0, sizeof(*ss)); - ss->sq = sq; - ss->cq = serialqueue_alloc_commandqueue(); - - ss->sc_list = malloc(sizeof(*sc_list)*sc_num); - memcpy(ss->sc_list, sc_list, sizeof(*sc_list)*sc_num); - ss->sc_num = sc_num; - - ss->move_clocks = malloc(sizeof(*ss->move_clocks)*move_num); - memset(ss->move_clocks, 0, sizeof(*ss->move_clocks)*move_num); - ss->num_move_clocks = move_num; - - return ss; -} - -// Free memory associated with a 'steppersync' object -void -steppersync_free(struct steppersync *ss) -{ - if (!ss) - return; - free(ss->sc_list); - free(ss->move_clocks); - serialqueue_free_commandqueue(ss->cq); - free(ss); -} - -// Set the conversion rate of 'print_time' to mcu clock -void -steppersync_set_time(struct steppersync *ss, double time_offset, double mcu_freq) -{ - int i; - for (i=0; i<ss->sc_num; i++) { - struct stepcompress *sc = ss->sc_list[i]; - stepcompress_set_time(sc, time_offset, mcu_freq); - } -} - -// Implement a binary heap algorithm to track when the next available -// 'struct move' in the mcu will be available -static void -heap_replace(struct steppersync *ss, uint64_t req_clock) -{ - uint64_t *mc = ss->move_clocks; - int nmc = ss->num_move_clocks, pos = 0; - for (;;) { - int child1_pos = 2*pos+1, child2_pos = 2*pos+2; - uint64_t child2_clock = child2_pos < nmc ? mc[child2_pos] : UINT64_MAX; - uint64_t child1_clock = child1_pos < nmc ? mc[child1_pos] : UINT64_MAX; - if (req_clock <= child1_clock && req_clock <= child2_clock) { - mc[pos] = req_clock; - break; - } - if (child1_clock < child2_clock) { - mc[pos] = child1_clock; - pos = child1_pos; - } else { - mc[pos] = child2_clock; - pos = child2_pos; - } - } -} - -// Find and transmit any scheduled steps prior to the given 'move_clock' -int -steppersync_flush(struct steppersync *ss, uint64_t move_clock) -{ - // Flush each stepcompress to the specified move_clock - int i; - for (i=0; i<ss->sc_num; i++) { - int ret = stepcompress_flush(ss->sc_list[i], move_clock); - if (ret) - return ret; - } - - // Order commands by the reqclock of each pending command - struct list_head msgs; - list_init(&msgs); - for (;;) { - // Find message with lowest reqclock - uint64_t req_clock = MAX_CLOCK; - struct queue_message *qm = NULL; - for (i=0; i<ss->sc_num; i++) { - struct stepcompress *sc = ss->sc_list[i]; - if (!list_empty(&sc->msg_queue)) { - struct queue_message *m = list_first_entry( - &sc->msg_queue, struct queue_message, node); - if (m->req_clock < req_clock) { - qm = m; - req_clock = m->req_clock; - } - } - } - if (!qm || (qm->min_clock && req_clock > move_clock)) - break; - - uint64_t next_avail = ss->move_clocks[0]; - if (qm->min_clock) - // The qm->min_clock field is overloaded to indicate that - // the command uses the 'move queue' and to store the time - // that move queue item becomes available. - heap_replace(ss, qm->min_clock); - // Reset the min_clock to its normal meaning (minimum transmit time) - qm->min_clock = next_avail; - - // Batch this command - list_del(&qm->node); - list_add_tail(&qm->node, &msgs); - } - - // Transmit commands - if (!list_empty(&msgs)) - serialqueue_send_batch(ss->sq, ss->cq, &msgs); - return 0; -} |