diff options
author | Tircown <74233386+Tircown@users.noreply.github.com> | 2022-09-01 21:56:31 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-09-01 15:56:31 -0400 |
commit | 354915d2ad0e17f5b7df98c1e78da1585c52f441 (patch) | |
tree | 9ea85bee77c0ba23af891061e3feaa89e287bd35 /klippy/kinematics/deltesian.py | |
parent | ec4ecd7a7076f57993f23ad80c568a1fe2b86260 (diff) | |
download | kutter-354915d2ad0e17f5b7df98c1e78da1585c52f441.tar.gz kutter-354915d2ad0e17f5b7df98c1e78da1585c52f441.tar.xz kutter-354915d2ad0e17f5b7df98c1e78da1585c52f441.zip |
kinematics: Add deltesian printers (#5743)
Initial push of the working deltesian kinematics after some successful tests.
Signed-off-by: Fabrice GALLET <tircown@gmail.com>
Diffstat (limited to 'klippy/kinematics/deltesian.py')
-rw-r--r-- | klippy/kinematics/deltesian.py | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/klippy/kinematics/deltesian.py b/klippy/kinematics/deltesian.py new file mode 100644 index 00000000..bb231370 --- /dev/null +++ b/klippy/kinematics/deltesian.py @@ -0,0 +1,184 @@ +# Code for handling the kinematics of deltesian robots +# +# Copyright (C) 2022 Fabrice Gallet <tircown@gmail.com> +# +# This file may be distributed under the terms of the GNU GPLv3 license. +import math, logging +import stepper + +# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO +SLOW_RATIO = 3. + +# Minimum angle with the horizontal for the arm to not exceed - in degrees +MIN_ANGLE = 5. + +class DeltesianKinematics: + def __init__(self, toolhead, config): + self.rails = [None] * 3 + stepper_configs = [config.getsection('stepper_' + s) + for s in ['left', 'right', 'y']] + self.rails[0] = stepper.PrinterRail( + stepper_configs[0], need_position_minmax = False) + def_pos_es = self.rails[0].get_homing_info().position_endstop + self.rails[1] = stepper.PrinterRail( + stepper_configs[1], need_position_minmax = False, + default_position_endstop = def_pos_es) + self.rails[2] = stepper.LookupMultiRail(stepper_configs[2]) + arm_x = self.arm_x = [None] * 2 + arm_x[0] = stepper_configs[0].getfloat('arm_x_length', above=0.) + arm_x[1] = stepper_configs[1].getfloat('arm_x_length', arm_x[0], + above=0.) + arm = [None] * 2 + arm[0] = stepper_configs[0].getfloat('arm_length', above=arm_x[0]) + arm[1] = stepper_configs[1].getfloat('arm_length', arm[0], + above=arm_x[1]) + arm2 = self.arm2 = [a**2 for a in arm] + self.rails[0].setup_itersolve( + 'deltesian_stepper_alloc', arm2[0], -arm_x[0]) + self.rails[1].setup_itersolve( + 'deltesian_stepper_alloc', arm2[1], arm_x[1]) + self.rails[2].setup_itersolve('cartesian_stepper_alloc', b'y') + for s in self.get_steppers(): + s.set_trapq(toolhead.get_trapq()) + toolhead.register_step_generator(s.generate_steps) + config.get_printer().register_event_handler( + "stepper_enable:motor_off", self._motor_off) + self.limits = [(1.0, -1.0)] * 3 + # X axis limits + min_angle = config.getfloat('min_angle', MIN_ANGLE, + minval=0., maxval=90.) + cos_angle = math.cos(math.radians(min_angle)) + x_kin_min = math.ceil( -min(arm_x[0], cos_angle * arm[1] - arm_x[1])) + x_kin_max = math.floor( min(arm_x[1], cos_angle * arm[0] - arm_x[0])) + x_kin_range = min(x_kin_max - x_kin_min, x_kin_max * 2, -x_kin_min * 2) + print_width = config.getfloat('print_width', None, minval=0., + maxval=x_kin_range) + if print_width: + self.limits[0] = (-print_width * 0.5, print_width * 0.5) + else: + self.limits[0] = (x_kin_min, x_kin_max) + # Y axis limits + self.limits[1] = self.rails[2].get_range() + # Z axis limits + pmax = [r.get_homing_info().position_endstop for r in self.rails[:2]] + self._abs_endstop = [p + math.sqrt(a2 - ax**2) for p, a2, ax + in zip( pmax, arm2, arm_x )] + self.home_z = self._actuator_to_cartesian(self._abs_endstop)[1] + z_max = min([self._pillars_z_max(x) for x in self.limits[0]]) + z_min = config.getfloat('minimum_z_position', 0, maxval=z_max) + self.limits[2] = (z_min, z_max) + # Limit the speed/accel if is is at the extreme values of the x axis + slow_ratio = config.getfloat('slow_ratio', SLOW_RATIO, minval=0.) + self.slow_x2 = self.very_slow_x2 = None + if slow_ratio > 0.: + sr2 = slow_ratio ** 2 + self.slow_x2 = min([math.sqrt((sr2 * a2) / (sr2 + 1)) + - axl for a2, axl in zip(arm2, arm_x)]) ** 2 + self.very_slow_x2 = min([math.sqrt((2 * sr2 * a2) / (2 * sr2 + 1)) + - axl for a2, axl in zip(arm2, arm_x)]) ** 2 + logging.info("Deltesian kinematics: moves slowed past %.2fmm" + " and %.2fmm" + % (math.sqrt(self.slow_x2), + math.sqrt(self.very_slow_x2))) + # Setup boundary checks + max_velocity, max_accel = toolhead.get_max_velocity() + self.max_z_velocity = config.getfloat('max_z_velocity', max_velocity, + above=0., maxval=max_velocity) + self.max_z_accel = config.getfloat('max_z_accel', max_accel, + above=0., maxval=max_accel) + self.axes_min = toolhead.Coord(*[l[0] for l in self.limits], e=0.) + self.axes_max = toolhead.Coord(*[l[1] for l in self.limits], e=0.) + self.homed_axis = [False] * 3 + self.set_position([0., 0., 0.], ()) + def get_steppers(self): + return [s for rail in self.rails for s in rail.get_steppers()] + def _actuator_to_cartesian(self, sp): + arm_x, arm2 = self.arm_x, self.arm2 + dx, dz = sum(arm_x), sp[1] - sp[0] + pivots = math.sqrt(dx**2 + dz**2) + # Trilateration w/ reference frame along left to right pivots + xt = (pivots**2 + arm2[0] - arm2[1]) / (2 * pivots) + zt = math.sqrt(arm2[0] - xt**2) + # Rotation and translation of the reference frame + x = xt * dx / pivots + zt * dz / pivots - arm_x[0] + z = xt * dz / pivots - zt * dx / pivots + sp[0] + return [x, z] + def _pillars_z_max(self, x): + arm_x, arm2 = self.arm_x, self.arm2 + dz = (math.sqrt(arm2[0] - (arm_x[0] + x)**2), + math.sqrt(arm2[1] - (arm_x[1] - x)**2)) + return min([o - z for o, z in zip(self._abs_endstop, dz)]) + def calc_position(self, stepper_positions): + sp = [stepper_positions[rail.get_name()] for rail in self.rails] + x, z = self._actuator_to_cartesian(sp[:2]) + return [x, sp[2], z] + def set_position(self, newpos, homing_axes): + for rail in self.rails: + rail.set_position(newpos) + for n in homing_axes: + self.homed_axis[n] = True + def home(self, homing_state): + homing_axes = homing_state.get_axes() + home_xz = 0 in homing_axes or 2 in homing_axes + home_y = 1 in homing_axes + forceaxes = ([0, 1, 2] if (home_xz and home_y) else + [0, 2] if home_xz else [1] if home_y else []) + homing_state.set_axes(forceaxes) + homepos = [None] * 4 + if home_xz: + homing_state.set_axes([0, 1, 2] if home_y else [0, 2]) + homepos[0], homepos[2] = 0., self.home_z + forcepos = list(homepos) + dz2 = [(a2 - ax ** 2) for a2, ax in zip(self.arm2, self.arm_x)] + forcepos[2] = -1.5 * math.sqrt(max(dz2)) + homing_state.home_rails(self.rails[:2], forcepos, homepos) + if home_y: + position_min, position_max = self.rails[2].get_range() + hi = self.rails[2].get_homing_info() + homepos[1] = hi.position_endstop + forcepos = list(homepos) + if hi.positive_dir: + forcepos[1] -= 1.5 * (hi.position_endstop - position_min) + else: + forcepos[1] += 1.5 * (position_max - hi.position_endstop) + homing_state.home_rails([self.rails[2]], forcepos, homepos) + def _motor_off(self, print_time): + self.homed_axis = [False] * 3 + def check_move(self, move): + limits = list(map(list, self.limits)) + spos, epos = move.start_pos, move.end_pos + homing_move = False + if epos[0] == 0. and epos[2] == self.home_z and not move.axes_d[1]: + # Identify a homing move + homing_move = True + elif epos[2] > limits[2][1]: + # Moves at the very top - adapt limits depending on the X position + limits[2][1] = self._pillars_z_max(epos[0]) + for i in (i for i, v in enumerate(move.axes_d[:3]) if v): + if not self.homed_axis[i]: + raise move.move_error("Must home axis first") + # Move out of range - verify not a homing move + if epos[i] < limits[i][0] or epos[i] > limits[i][1]: + if not homing_move: + raise move.move_error() + if move.axes_d[2]: + z_ratio = move.move_d / abs(move.axes_d[2]) + move.limit_speed( + self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio) + # Limit the speed/accel if is is at the extreme values of the x axis + if move.axes_d[0] and self.slow_x2 and self.very_slow_x2: + move_x2 = max(spos[0] ** 2, epos[0] ** 2) + if move_x2 > self.very_slow_x2: + move.limit_speed(self.max_velocity *0.25, self.max_accel *0.25) + elif move_x2 > self.slow_x2: + move.limit_speed(self.max_velocity *0.50, self.max_accel *0.50) + def get_status(self, eventtime): + axes = [a for a, b in zip("xyz", self.homed_axis) if b] + return { + 'homed_axes': "".join(axes), + 'axis_minimum': self.axes_min, + 'axis_maximum': self.axes_max, + } + +def load_kinematics(toolhead, config): + return DeltesianKinematics(toolhead, config) |