aboutsummaryrefslogtreecommitdiffstats
path: root/klippy/delta.py
diff options
context:
space:
mode:
authorKevin O'Connor <kevin@koconnor.net>2018-07-12 22:15:45 -0400
committerKevin O'Connor <kevin@koconnor.net>2018-07-12 22:50:25 -0400
commit8faab46ed2fc05495e63bbca8fe3dfa6828f7db3 (patch)
tree313faa1a4357e24c57f7d5ea863edbf282a35742 /klippy/delta.py
parent7d897d84d773654a8beaf56012e0bf8285db8206 (diff)
downloadkutter-8faab46ed2fc05495e63bbca8fe3dfa6828f7db3.tar.gz
kutter-8faab46ed2fc05495e63bbca8fe3dfa6828f7db3.tar.xz
kutter-8faab46ed2fc05495e63bbca8fe3dfa6828f7db3.zip
toolhead: Move kinematic modules to new kinematics/ directory
Move extruder.py, cartesian.py, corexy.py, and delta.py to a new kinematics/ sub-directory. This is intended to make adding new kinematics a little easier. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
Diffstat (limited to 'klippy/delta.py')
-rw-r--r--klippy/delta.py200
1 files changed, 0 insertions, 200 deletions
diff --git a/klippy/delta.py b/klippy/delta.py
deleted file mode 100644
index 328d01f5..00000000
--- a/klippy/delta.py
+++ /dev/null
@@ -1,200 +0,0 @@
-# Code for handling the kinematics of linear delta robots
-#
-# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
-#
-# This file may be distributed under the terms of the GNU GPLv3 license.
-import math, logging
-import stepper, homing, chelper, mathutil
-
-# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO
-SLOW_RATIO = 3.
-
-class DeltaKinematics:
- def __init__(self, toolhead, config):
- # Setup tower rails
- stepper_configs = [config.getsection('stepper_' + n)
- for n in ['a', 'b', 'c']]
- rail_a = stepper.PrinterRail(
- stepper_configs[0], need_position_minmax = False)
- a_endstop = rail_a.get_homing_info().position_endstop
- rail_b = stepper.PrinterRail(
- stepper_configs[1], need_position_minmax = False,
- default_position_endstop=a_endstop)
- rail_c = stepper.PrinterRail(
- stepper_configs[2], need_position_minmax = False,
- default_position_endstop=a_endstop)
- self.rails = [rail_a, rail_b, rail_c]
- # Read radius and arm lengths
- self.radius = radius = config.getfloat('delta_radius', above=0.)
- arm_length_a = stepper_configs[0].getfloat('arm_length', above=radius)
- self.arm_lengths = arm_lengths = [
- sconfig.getfloat('arm_length', arm_length_a, above=radius)
- for sconfig in stepper_configs]
- self.arm2 = [arm**2 for arm in arm_lengths]
- self.endstops = [(rail.get_homing_info().position_endstop
- + math.sqrt(arm2 - radius**2))
- for rail, arm2 in zip(self.rails, self.arm2)]
- # Setup boundary checks
- self.need_motor_enable = self.need_home = True
- self.limit_xy2 = -1.
- self.max_z = min([rail.get_homing_info().position_endstop
- for rail in self.rails])
- self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
- self.limit_z = min([ep - arm
- for ep, arm in zip(self.endstops, arm_lengths)])
- logging.info(
- "Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
- self.max_z, self.limit_z))
- # Setup stepper max halt velocity
- self.max_velocity, self.max_accel = toolhead.get_max_velocity()
- self.max_z_velocity = config.getfloat(
- 'max_z_velocity', self.max_velocity,
- above=0., maxval=self.max_velocity)
- max_halt_velocity = toolhead.get_max_axis_halt()
- for rail in self.rails:
- rail.set_max_jerk(max_halt_velocity, self.max_accel)
- # Determine tower locations in cartesian space
- self.angles = [sconfig.getfloat('angle', angle)
- for sconfig, angle in zip(stepper_configs,
- [210., 330., 90.])]
- self.towers = [(math.cos(math.radians(angle)) * radius,
- math.sin(math.radians(angle)) * radius)
- for angle in self.angles]
- # Setup iterative solver
- ffi_main, ffi_lib = chelper.get_ffi()
- self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free)
- self.move_fill = ffi_lib.move_fill
- for r, a, t in zip(self.rails, self.arm2, self.towers):
- sk = ffi_main.gc(ffi_lib.delta_stepper_alloc(a, t[0], t[1]),
- ffi_lib.free)
- r.setup_itersolve(sk)
- # Find the point where an XY move could result in excessive
- # tower movement
- half_min_step_dist = min([r.get_steppers()[0].get_step_dist()
- for r in self.rails]) * .5
- min_arm_length = min(arm_lengths)
- def ratio_to_dist(ratio):
- return (ratio * math.sqrt(min_arm_length**2 / (ratio**2 + 1.)
- - half_min_step_dist**2)
- + half_min_step_dist)
- self.slow_xy2 = (ratio_to_dist(SLOW_RATIO) - radius)**2
- self.very_slow_xy2 = (ratio_to_dist(2. * SLOW_RATIO) - radius)**2
- self.max_xy2 = min(radius, min_arm_length - radius,
- ratio_to_dist(4. * SLOW_RATIO) - radius)**2
- logging.info(
- "Delta max build radius %.2fmm (moves slowed past %.2fmm and %.2fmm)"
- % (math.sqrt(self.max_xy2), math.sqrt(self.slow_xy2),
- math.sqrt(self.very_slow_xy2)))
- self.set_position([0., 0., 0.], ())
- def get_rails(self, flags=""):
- return list(self.rails)
- def _actuator_to_cartesian(self, spos):
- sphere_coords = [(t[0], t[1], sp) for t, sp in zip(self.towers, spos)]
- return mathutil.trilateration(sphere_coords, self.arm2)
- def calc_position(self):
- spos = [rail.get_commanded_position() for rail in self.rails]
- return self._actuator_to_cartesian(spos)
- def set_position(self, newpos, homing_axes):
- for rail in self.rails:
- rail.set_position(newpos)
- self.limit_xy2 = -1.
- if tuple(homing_axes) == (0, 1, 2):
- self.need_home = False
- def home(self, homing_state):
- # All axes are homed simultaneously
- homing_state.set_axes([0, 1, 2])
- endstops = [es for rail in self.rails for es in rail.get_endstops()]
- # Initial homing - assume homing speed same for all steppers
- hi = self.rails[0].get_homing_info()
- homing_speed = min(hi.speed, self.max_z_velocity)
- homepos = [0., 0., self.max_z, None]
- coord = list(homepos)
- coord[2] = -1.5 * math.sqrt(max(self.arm2)-self.max_xy2)
- homing_state.home(coord, homepos, endstops, homing_speed)
- # Retract
- coord[2] = homepos[2] - hi.retract_dist
- homing_state.retract(coord, homing_speed)
- # Home again
- coord[2] -= hi.retract_dist
- homing_state.home(coord, homepos, endstops,
- homing_speed/2.0, second_home=True)
- # Set final homed position
- spos = [ep + rail.get_homed_offset()
- for ep, rail in zip(self.endstops, self.rails)]
- homing_state.set_homed_position(self._actuator_to_cartesian(spos))
- def motor_off(self, print_time):
- self.limit_xy2 = -1.
- for rail in self.rails:
- rail.motor_enable(print_time, 0)
- self.need_motor_enable = self.need_home = True
- def _check_motor_enable(self, print_time):
- for rail in self.rails:
- rail.motor_enable(print_time, 1)
- self.need_motor_enable = False
- def check_move(self, move):
- end_pos = move.end_pos
- xy2 = end_pos[0]**2 + end_pos[1]**2
- if xy2 <= self.limit_xy2 and not move.axes_d[2]:
- # Normal XY move
- return
- if self.need_home:
- raise homing.EndstopMoveError(end_pos, "Must home first")
- limit_xy2 = self.max_xy2
- if end_pos[2] > self.limit_z:
- limit_xy2 = min(limit_xy2, (self.max_z - end_pos[2])**2)
- if xy2 > limit_xy2 or end_pos[2] < self.min_z or end_pos[2] > self.max_z:
- raise homing.EndstopMoveError(end_pos)
- if move.axes_d[2]:
- move.limit_speed(self.max_z_velocity, move.accel)
- limit_xy2 = -1.
- # Limit the speed/accel of this move if is is at the extreme
- # end of the build envelope
- extreme_xy2 = max(xy2, move.start_pos[0]**2 + move.start_pos[1]**2)
- if extreme_xy2 > self.slow_xy2:
- r = 0.5
- if extreme_xy2 > self.very_slow_xy2:
- r = 0.25
- max_velocity = self.max_velocity
- if move.axes_d[2]:
- max_velocity = self.max_z_velocity
- move.limit_speed(max_velocity * r, self.max_accel * r)
- limit_xy2 = -1.
- self.limit_xy2 = min(limit_xy2, self.slow_xy2)
- def move(self, print_time, move):
- if self.need_motor_enable:
- self._check_motor_enable(print_time)
- self.move_fill(
- self.cmove, print_time,
- move.accel_t, move.cruise_t, move.decel_t,
- move.start_pos[0], move.start_pos[1], move.start_pos[2],
- move.axes_d[0], move.axes_d[1], move.axes_d[2],
- move.start_v, move.cruise_v, move.accel)
- for rail in self.rails:
- rail.step_itersolve(self.cmove)
- # Helper functions for DELTA_CALIBRATE script
- def get_stable_position(self):
- steppers = [rail.get_steppers()[0] for rail in self.rails]
- return [int((ep - s.get_commanded_position()) / s.get_step_dist() + .5)
- * s.get_step_dist()
- for ep, s in zip(self.endstops, steppers)]
- def get_calibrate_params(self):
- return {
- 'endstop_a': self.rails[0].get_homing_info().position_endstop,
- 'endstop_b': self.rails[1].get_homing_info().position_endstop,
- 'endstop_c': self.rails[2].get_homing_info().position_endstop,
- 'angle_a': self.angles[0], 'angle_b': self.angles[1],
- 'angle_c': self.angles[2], 'radius': self.radius,
- 'arm_a': self.arm_lengths[0], 'arm_b': self.arm_lengths[1],
- 'arm_c': self.arm_lengths[2] }
-
-def get_position_from_stable(spos, params):
- angles = [params['angle_a'], params['angle_b'], params['angle_c']]
- radius = params['radius']
- radius2 = radius**2
- towers = [(math.cos(angle) * radius, math.sin(angle) * radius)
- for angle in map(math.radians, angles)]
- arm2 = [a**2 for a in [params['arm_a'], params['arm_b'], params['arm_c']]]
- endstops = [params['endstop_a'], params['endstop_b'], params['endstop_c']]
- sphere_coords = [(t[0], t[1], es + math.sqrt(a2 - radius2) - p)
- for t, es, a2, p in zip(towers, endstops, arm2, spos)]
- return mathutil.trilateration(sphere_coords, arm2)