diff options
author | Kevin O'Connor <kevin@koconnor.net> | 2018-07-12 22:15:45 -0400 |
---|---|---|
committer | Kevin O'Connor <kevin@koconnor.net> | 2018-07-12 22:50:25 -0400 |
commit | 8faab46ed2fc05495e63bbca8fe3dfa6828f7db3 (patch) | |
tree | 313faa1a4357e24c57f7d5ea863edbf282a35742 /klippy/delta.py | |
parent | 7d897d84d773654a8beaf56012e0bf8285db8206 (diff) | |
download | kutter-8faab46ed2fc05495e63bbca8fe3dfa6828f7db3.tar.gz kutter-8faab46ed2fc05495e63bbca8fe3dfa6828f7db3.tar.xz kutter-8faab46ed2fc05495e63bbca8fe3dfa6828f7db3.zip |
toolhead: Move kinematic modules to new kinematics/ directory
Move extruder.py, cartesian.py, corexy.py, and delta.py to a new
kinematics/ sub-directory. This is intended to make adding new
kinematics a little easier.
Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
Diffstat (limited to 'klippy/delta.py')
-rw-r--r-- | klippy/delta.py | 200 |
1 files changed, 0 insertions, 200 deletions
diff --git a/klippy/delta.py b/klippy/delta.py deleted file mode 100644 index 328d01f5..00000000 --- a/klippy/delta.py +++ /dev/null @@ -1,200 +0,0 @@ -# Code for handling the kinematics of linear delta robots -# -# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net> -# -# This file may be distributed under the terms of the GNU GPLv3 license. -import math, logging -import stepper, homing, chelper, mathutil - -# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO -SLOW_RATIO = 3. - -class DeltaKinematics: - def __init__(self, toolhead, config): - # Setup tower rails - stepper_configs = [config.getsection('stepper_' + n) - for n in ['a', 'b', 'c']] - rail_a = stepper.PrinterRail( - stepper_configs[0], need_position_minmax = False) - a_endstop = rail_a.get_homing_info().position_endstop - rail_b = stepper.PrinterRail( - stepper_configs[1], need_position_minmax = False, - default_position_endstop=a_endstop) - rail_c = stepper.PrinterRail( - stepper_configs[2], need_position_minmax = False, - default_position_endstop=a_endstop) - self.rails = [rail_a, rail_b, rail_c] - # Read radius and arm lengths - self.radius = radius = config.getfloat('delta_radius', above=0.) - arm_length_a = stepper_configs[0].getfloat('arm_length', above=radius) - self.arm_lengths = arm_lengths = [ - sconfig.getfloat('arm_length', arm_length_a, above=radius) - for sconfig in stepper_configs] - self.arm2 = [arm**2 for arm in arm_lengths] - self.endstops = [(rail.get_homing_info().position_endstop - + math.sqrt(arm2 - radius**2)) - for rail, arm2 in zip(self.rails, self.arm2)] - # Setup boundary checks - self.need_motor_enable = self.need_home = True - self.limit_xy2 = -1. - self.max_z = min([rail.get_homing_info().position_endstop - for rail in self.rails]) - self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z) - self.limit_z = min([ep - arm - for ep, arm in zip(self.endstops, arm_lengths)]) - logging.info( - "Delta max build height %.2fmm (radius tapered above %.2fmm)" % ( - self.max_z, self.limit_z)) - # Setup stepper max halt velocity - self.max_velocity, self.max_accel = toolhead.get_max_velocity() - self.max_z_velocity = config.getfloat( - 'max_z_velocity', self.max_velocity, - above=0., maxval=self.max_velocity) - max_halt_velocity = toolhead.get_max_axis_halt() - for rail in self.rails: - rail.set_max_jerk(max_halt_velocity, self.max_accel) - # Determine tower locations in cartesian space - self.angles = [sconfig.getfloat('angle', angle) - for sconfig, angle in zip(stepper_configs, - [210., 330., 90.])] - self.towers = [(math.cos(math.radians(angle)) * radius, - math.sin(math.radians(angle)) * radius) - for angle in self.angles] - # Setup iterative solver - ffi_main, ffi_lib = chelper.get_ffi() - self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free) - self.move_fill = ffi_lib.move_fill - for r, a, t in zip(self.rails, self.arm2, self.towers): - sk = ffi_main.gc(ffi_lib.delta_stepper_alloc(a, t[0], t[1]), - ffi_lib.free) - r.setup_itersolve(sk) - # Find the point where an XY move could result in excessive - # tower movement - half_min_step_dist = min([r.get_steppers()[0].get_step_dist() - for r in self.rails]) * .5 - min_arm_length = min(arm_lengths) - def ratio_to_dist(ratio): - return (ratio * math.sqrt(min_arm_length**2 / (ratio**2 + 1.) - - half_min_step_dist**2) - + half_min_step_dist) - self.slow_xy2 = (ratio_to_dist(SLOW_RATIO) - radius)**2 - self.very_slow_xy2 = (ratio_to_dist(2. * SLOW_RATIO) - radius)**2 - self.max_xy2 = min(radius, min_arm_length - radius, - ratio_to_dist(4. * SLOW_RATIO) - radius)**2 - logging.info( - "Delta max build radius %.2fmm (moves slowed past %.2fmm and %.2fmm)" - % (math.sqrt(self.max_xy2), math.sqrt(self.slow_xy2), - math.sqrt(self.very_slow_xy2))) - self.set_position([0., 0., 0.], ()) - def get_rails(self, flags=""): - return list(self.rails) - def _actuator_to_cartesian(self, spos): - sphere_coords = [(t[0], t[1], sp) for t, sp in zip(self.towers, spos)] - return mathutil.trilateration(sphere_coords, self.arm2) - def calc_position(self): - spos = [rail.get_commanded_position() for rail in self.rails] - return self._actuator_to_cartesian(spos) - def set_position(self, newpos, homing_axes): - for rail in self.rails: - rail.set_position(newpos) - self.limit_xy2 = -1. - if tuple(homing_axes) == (0, 1, 2): - self.need_home = False - def home(self, homing_state): - # All axes are homed simultaneously - homing_state.set_axes([0, 1, 2]) - endstops = [es for rail in self.rails for es in rail.get_endstops()] - # Initial homing - assume homing speed same for all steppers - hi = self.rails[0].get_homing_info() - homing_speed = min(hi.speed, self.max_z_velocity) - homepos = [0., 0., self.max_z, None] - coord = list(homepos) - coord[2] = -1.5 * math.sqrt(max(self.arm2)-self.max_xy2) - homing_state.home(coord, homepos, endstops, homing_speed) - # Retract - coord[2] = homepos[2] - hi.retract_dist - homing_state.retract(coord, homing_speed) - # Home again - coord[2] -= hi.retract_dist - homing_state.home(coord, homepos, endstops, - homing_speed/2.0, second_home=True) - # Set final homed position - spos = [ep + rail.get_homed_offset() - for ep, rail in zip(self.endstops, self.rails)] - homing_state.set_homed_position(self._actuator_to_cartesian(spos)) - def motor_off(self, print_time): - self.limit_xy2 = -1. - for rail in self.rails: - rail.motor_enable(print_time, 0) - self.need_motor_enable = self.need_home = True - def _check_motor_enable(self, print_time): - for rail in self.rails: - rail.motor_enable(print_time, 1) - self.need_motor_enable = False - def check_move(self, move): - end_pos = move.end_pos - xy2 = end_pos[0]**2 + end_pos[1]**2 - if xy2 <= self.limit_xy2 and not move.axes_d[2]: - # Normal XY move - return - if self.need_home: - raise homing.EndstopMoveError(end_pos, "Must home first") - limit_xy2 = self.max_xy2 - if end_pos[2] > self.limit_z: - limit_xy2 = min(limit_xy2, (self.max_z - end_pos[2])**2) - if xy2 > limit_xy2 or end_pos[2] < self.min_z or end_pos[2] > self.max_z: - raise homing.EndstopMoveError(end_pos) - if move.axes_d[2]: - move.limit_speed(self.max_z_velocity, move.accel) - limit_xy2 = -1. - # Limit the speed/accel of this move if is is at the extreme - # end of the build envelope - extreme_xy2 = max(xy2, move.start_pos[0]**2 + move.start_pos[1]**2) - if extreme_xy2 > self.slow_xy2: - r = 0.5 - if extreme_xy2 > self.very_slow_xy2: - r = 0.25 - max_velocity = self.max_velocity - if move.axes_d[2]: - max_velocity = self.max_z_velocity - move.limit_speed(max_velocity * r, self.max_accel * r) - limit_xy2 = -1. - self.limit_xy2 = min(limit_xy2, self.slow_xy2) - def move(self, print_time, move): - if self.need_motor_enable: - self._check_motor_enable(print_time) - self.move_fill( - self.cmove, print_time, - move.accel_t, move.cruise_t, move.decel_t, - move.start_pos[0], move.start_pos[1], move.start_pos[2], - move.axes_d[0], move.axes_d[1], move.axes_d[2], - move.start_v, move.cruise_v, move.accel) - for rail in self.rails: - rail.step_itersolve(self.cmove) - # Helper functions for DELTA_CALIBRATE script - def get_stable_position(self): - steppers = [rail.get_steppers()[0] for rail in self.rails] - return [int((ep - s.get_commanded_position()) / s.get_step_dist() + .5) - * s.get_step_dist() - for ep, s in zip(self.endstops, steppers)] - def get_calibrate_params(self): - return { - 'endstop_a': self.rails[0].get_homing_info().position_endstop, - 'endstop_b': self.rails[1].get_homing_info().position_endstop, - 'endstop_c': self.rails[2].get_homing_info().position_endstop, - 'angle_a': self.angles[0], 'angle_b': self.angles[1], - 'angle_c': self.angles[2], 'radius': self.radius, - 'arm_a': self.arm_lengths[0], 'arm_b': self.arm_lengths[1], - 'arm_c': self.arm_lengths[2] } - -def get_position_from_stable(spos, params): - angles = [params['angle_a'], params['angle_b'], params['angle_c']] - radius = params['radius'] - radius2 = radius**2 - towers = [(math.cos(angle) * radius, math.sin(angle) * radius) - for angle in map(math.radians, angles)] - arm2 = [a**2 for a in [params['arm_a'], params['arm_b'], params['arm_c']]] - endstops = [params['endstop_a'], params['endstop_b'], params['endstop_c']] - sphere_coords = [(t[0], t[1], es + math.sqrt(a2 - radius2) - p) - for t, es, a2, p in zip(towers, endstops, arm2, spos)] - return mathutil.trilateration(sphere_coords, arm2) |