aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorKevin O'Connor <kevin@koconnor.net>2018-06-22 13:57:15 -0400
committerKevin O'Connor <kevin@koconnor.net>2018-06-22 14:12:09 -0400
commit3e88ffabf1b3c54baa48aca058b98354d4d959bc (patch)
tree11c44896418691b3121b4326204551e0dbdc3bbf
parent77a2c95b5e00b0d80f75153f30203c6e10a5230f (diff)
downloadkutter-3e88ffabf1b3c54baa48aca058b98354d4d959bc.tar.gz
kutter-3e88ffabf1b3c54baa48aca058b98354d4d959bc.tar.xz
kutter-3e88ffabf1b3c54baa48aca058b98354d4d959bc.zip
mathutil: Move trilateration code from delta.py to mathutil.py
Move the trilateration algorithm to mathutil.py. It may be useful outside of delta kinematics, and it complicates the delta code. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
-rw-r--r--klippy/delta.py64
-rw-r--r--klippy/mathutil.py61
2 files changed, 67 insertions, 58 deletions
diff --git a/klippy/delta.py b/klippy/delta.py
index 08fc91f6..3efed7db 100644
--- a/klippy/delta.py
+++ b/klippy/delta.py
@@ -4,7 +4,7 @@
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
-import stepper, homing, chelper
+import stepper, homing, chelper, mathutil
# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO
SLOW_RATIO = 3.
@@ -85,8 +85,9 @@ class DeltaKinematics:
self.set_position([0., 0., 0.], ())
def get_rails(self, flags=""):
return list(self.rails)
- def _actuator_to_cartesian(self, pos):
- return actuator_to_cartesian(self.towers, self.arm2, pos)
+ def _actuator_to_cartesian(self, spos):
+ sphere_coords = [(t[0], t[1], sp) for t, sp in zip(self.towers, spos)]
+ return mathutil.trilateration(sphere_coords, self.arm2)
def calc_position(self):
spos = [rail.get_commanded_position() for rail in self.rails]
return self._actuator_to_cartesian(spos)
@@ -183,57 +184,6 @@ class DeltaKinematics:
'arm_a': self.arm_lengths[0], 'arm_b': self.arm_lengths[1],
'arm_c': self.arm_lengths[2] }
-
-######################################################################
-# Matrix helper functions for 3x1 matrices
-######################################################################
-
-def matrix_cross(m1, m2):
- return [m1[1] * m2[2] - m1[2] * m2[1],
- m1[2] * m2[0] - m1[0] * m2[2],
- m1[0] * m2[1] - m1[1] * m2[0]]
-
-def matrix_dot(m1, m2):
- return m1[0] * m2[0] + m1[1] * m2[1] + m1[2] * m2[2]
-
-def matrix_magsq(m1):
- return m1[0]**2 + m1[1]**2 + m1[2]**2
-
-def matrix_add(m1, m2):
- return [m1[0] + m2[0], m1[1] + m2[1], m1[2] + m2[2]]
-
-def matrix_sub(m1, m2):
- return [m1[0] - m2[0], m1[1] - m2[1], m1[2] - m2[2]]
-
-def matrix_mul(m1, s):
- return [m1[0]*s, m1[1]*s, m1[2]*s]
-
-def actuator_to_cartesian(towers, arm2, pos):
- # Find nozzle position using trilateration (see wikipedia)
- carriage1 = list(towers[0]) + [pos[0]]
- carriage2 = list(towers[1]) + [pos[1]]
- carriage3 = list(towers[2]) + [pos[2]]
-
- s21 = matrix_sub(carriage2, carriage1)
- s31 = matrix_sub(carriage3, carriage1)
-
- d = math.sqrt(matrix_magsq(s21))
- ex = matrix_mul(s21, 1. / d)
- i = matrix_dot(ex, s31)
- vect_ey = matrix_sub(s31, matrix_mul(ex, i))
- ey = matrix_mul(vect_ey, 1. / math.sqrt(matrix_magsq(vect_ey)))
- ez = matrix_cross(ex, ey)
- j = matrix_dot(ey, s31)
-
- x = (arm2[0] - arm2[1] + d**2) / (2. * d)
- y = (arm2[0] - arm2[2] - x**2 + (x-i)**2 + j**2) / (2. * j)
- z = -math.sqrt(arm2[0] - x**2 - y**2)
-
- ex_x = matrix_mul(ex, x)
- ey_y = matrix_mul(ey, y)
- ez_z = matrix_mul(ez, z)
- return matrix_add(carriage1, matrix_add(ex_x, matrix_add(ey_y, ez_z)))
-
def get_position_from_stable(spos, params):
angles = [params['angle_a'], params['angle_b'], params['angle_c']]
radius = params['radius']
@@ -242,6 +192,6 @@ def get_position_from_stable(spos, params):
for angle in map(math.radians, angles)]
arm2 = [a**2 for a in [params['arm_a'], params['arm_b'], params['arm_c']]]
endstops = [params['endstop_a'], params['endstop_b'], params['endstop_c']]
- pos = [es + math.sqrt(a2 - radius2) - p
- for es, a2, p in zip(endstops, arm2, spos)]
- return actuator_to_cartesian(towers, arm2, pos)
+ sphere_coords = [(t[0], t[1], es + math.sqrt(a2 - radius2) - p)
+ for t, es, a2, p in zip(towers, endstops, arm2, spos)]
+ return mathutil.trilateration(sphere_coords, arm2)
diff --git a/klippy/mathutil.py b/klippy/mathutil.py
index d8df3539..2e39c5d1 100644
--- a/klippy/mathutil.py
+++ b/klippy/mathutil.py
@@ -3,7 +3,12 @@
# Copyright (C) 2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
-import logging
+import math, logging
+
+
+######################################################################
+# Coordinate descent
+######################################################################
# Helper code that implements coordinate descent
def coordinate_descent(adj_params, params, error_func):
@@ -38,3 +43,57 @@ def coordinate_descent(adj_params, params, error_func):
dp[param_name] *= 0.9
logging.info("Coordinate descent best_err: %s rounds: %d", best_err, rounds)
return params
+
+
+######################################################################
+# Trilateration
+######################################################################
+
+# Trilateration finds the intersection of three spheres. See the
+# wikipedia article for the details of the algorithm.
+def trilateration(sphere_coords, radius2):
+ sphere_coord1, sphere_coord2, sphere_coord3 = sphere_coords
+ s21 = matrix_sub(sphere_coord2, sphere_coord1)
+ s31 = matrix_sub(sphere_coord3, sphere_coord1)
+
+ d = math.sqrt(matrix_magsq(s21))
+ ex = matrix_mul(s21, 1. / d)
+ i = matrix_dot(ex, s31)
+ vect_ey = matrix_sub(s31, matrix_mul(ex, i))
+ ey = matrix_mul(vect_ey, 1. / math.sqrt(matrix_magsq(vect_ey)))
+ ez = matrix_cross(ex, ey)
+ j = matrix_dot(ey, s31)
+
+ x = (radius2[0] - radius2[1] + d**2) / (2. * d)
+ y = (radius2[0] - radius2[2] - x**2 + (x-i)**2 + j**2) / (2. * j)
+ z = -math.sqrt(radius2[0] - x**2 - y**2)
+
+ ex_x = matrix_mul(ex, x)
+ ey_y = matrix_mul(ey, y)
+ ez_z = matrix_mul(ez, z)
+ return matrix_add(sphere_coord1, matrix_add(ex_x, matrix_add(ey_y, ez_z)))
+
+
+######################################################################
+# Matrix helper functions for 3x1 matrices
+######################################################################
+
+def matrix_cross(m1, m2):
+ return [m1[1] * m2[2] - m1[2] * m2[1],
+ m1[2] * m2[0] - m1[0] * m2[2],
+ m1[0] * m2[1] - m1[1] * m2[0]]
+
+def matrix_dot(m1, m2):
+ return m1[0] * m2[0] + m1[1] * m2[1] + m1[2] * m2[2]
+
+def matrix_magsq(m1):
+ return m1[0]**2 + m1[1]**2 + m1[2]**2
+
+def matrix_add(m1, m2):
+ return [m1[0] + m2[0], m1[1] + m2[1], m1[2] + m2[2]]
+
+def matrix_sub(m1, m2):
+ return [m1[0] - m2[0], m1[1] - m2[1], m1[2] - m2[2]]
+
+def matrix_mul(m1, s):
+ return [m1[0]*s, m1[1]*s, m1[2]*s]