1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
/*
* Copyright (C) 2014 Tomasz Kramkowski <tk@the-tk.com>
*
* This program is free software. It is licensed under version 3 of the
* GNU General Public License.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see [http://www.gnu.org/licenses/].
*/
#include <stdlib.h>
#include <stdio.h>
#include <xcb/xcb.h>
#include <xcb/xcb_image.h>
#include <xif.h>
#include <time.h>
#define WIDTH 640
#define HEIGHT 480
void perlin(uint8_t * const, uint16_t, uint16_t);
int main(int arg, char **argv)
{
srand(time(NULL));
xcb_connection_t *connection = xcb_connect(NULL, NULL);
xcb_screen_t *screen = xcb_setup_roots_iterator(xcb_get_setup(connection)).data;
xcb_colormap_t colormap = screen->default_colormap;
xcb_drawable_t window = xcb_generate_id(connection);
uint32_t mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK;
uint32_t values[] = {screen->black_pixel, XCB_EVENT_MASK_EXPOSURE | XCB_EVENT_MASK_BUTTON_PRESS};
xcb_create_window(connection,
/*screen->root_depth,*/
24,
window,
screen->root,
0, 0,
WIDTH, HEIGHT,
1,
XCB_WINDOW_CLASS_INPUT_OUTPUT,
screen->root_visual,
mask, values);
xcb_pixmap_t pixmap = xcb_generate_id(connection);
xcb_create_pixmap(connection,
24,
pixmap,
window,
WIDTH, HEIGHT);
uint8_t *img = malloc(WIDTH * HEIGHT * 4);
uint8_t *limg = img;
/*for (int y = 0; y < HEIGHT; y++)*/
/*for (int x = 0; x < WIDTH; x++) {*/
/**(limg++) = 128;*/
/**(limg++) = 128;*/
/**(limg++) = 128;*/
/*limg++;*/
/*}*/
perlin(img, WIDTH, HEIGHT);
xcb_image_t *image = xcb_image_create(WIDTH, HEIGHT,
XCB_IMAGE_FORMAT_Z_PIXMAP,
8, 24, 32,
0,
/*xcb_get_setup(connection)->image_byte_order,*/
XCB_IMAGE_ORDER_MSB_FIRST,
XCB_IMAGE_ORDER_LSB_FIRST,
img,
WIDTH * HEIGHT * 4,
img);
xcb_gcontext_t gc = xcb_generate_id(connection);
xcb_create_gc(connection,
gc,
pixmap,
0, NULL);
xcb_image_put(connection, pixmap, gc, image, 0, 0, 0);
xif_write(image, "test.xif");
xcb_map_window(connection, window);
xcb_flush(connection);
xcb_generic_event_t *event;
xcb_expose_event_t *expose;
while ((event = xcb_wait_for_event(connection))) {
switch (event->response_type & ~0x80) {
case XCB_EXPOSE:
expose = (xcb_expose_event_t *)event;
xcb_copy_area(connection,
pixmap,
window,
gc,
expose->x, expose->y,
expose->x, expose->y,
expose->width, expose->height);
xcb_flush(connection);
break;
case XCB_BUTTON_PRESS:
goto end;
break;
default:
break;
}
free(event);
}
end:
xcb_free_pixmap(connection, pixmap);
xcb_disconnect(connection);
xcb_image_destroy(image);
return 0;
}
int8_t randrange(int8_t from, int8_t to)
{
int base_random = rand();
if (RAND_MAX == base_random) return randrange(from, to);
int range = to - from,
remainder = RAND_MAX % range,
bucket = RAND_MAX / range;
if (base_random < RAND_MAX - remainder) {
return from + base_random/bucket;
} else {
return randrange(from, to);
}
}
#define lerp(t, a, b) (a + t * (b - a))
void perlin(uint8_t * const img, uint16_t width, uint16_t height)
{
uint8_t *limg = img;
for (int y = 0; y < HEIGHT; y++)
for (int x = 0; x < WIDTH; x++) {
*(limg++) = 128;
*(limg++) = 128;
*(limg++) = 128;
limg++;
}
int8_t *mipmap = malloc(sizeof(int8_t) * (2 * 2 + 4 * 4 + 8 * 8 + 16 * 16) * 4);
int8_t *lmipmap = mipmap;
for (int s = 2; s <= 16; s*=2)
for (int x = 0; x < s * s; x++) {
*(lmipmap++) = randrange(-128 / s, 128 / s);
*(lmipmap++) = randrange(-128 / s, 128 / s);
*(lmipmap++) = randrange(-128 / s, 128 / s);
lmipmap++;
printf("S: %d X: %d Y: %d R: %d G: %d B: %d\n", s, x / s, x, *(lmipmap-4), *(lmipmap-3), *(lmipmap-2));
};
limg = img;
lmipmap = mipmap;
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
for (int bit = 0; bit < 2; bit ++) {
for (int s = 2; s <= 16; s*=2) {
size_t offset = 0;
for (int i = s / 2; i >= 2; i/=2)
offset += i * i;
lmipmap = mipmap + offset;
uint16_t xblock = width / (s - 1);
uint16_t yblock = height / (s - 1);
uint8_t xbpos = (float)x / (float)xblock;
uint8_t ybpos = (float)y / (float)yblock;
float xmul = (float)x / (float)width - (float)xbpos;
float ymul = (float)y / (float)height - (float)ybpos;
int8_t valtl, valtr, valbl, valbr;
valtl = lmipmap[bit + 4 * (ybpos * s + xbpos)];
valtr = lmipmap[bit + 4 * (ybpos * s + xbpos + 1)];
valbl = lmipmap[bit + 4 * ((ybpos + 1) * s + xbpos)];
valbr = lmipmap[bit + 4 * ((ybpos + 1) * s + xbpos + 1)];
int8_t wlerpu = lerp(xmul, valtl, valtr);
int8_t wlerpl = lerp(xmul, valbl, valbr);
int8_t endval = lerp(ymul, wlerpl, wlerpu);
limg[bit + 4 * (y * width + x)] = limg[bit + 4 * (y * width + x)] + endval;
}
}
free(mipmap);
}
|