1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
from functools import reduce
with open('8.in') as f:
grid = [[int(c) for c in line.rstrip()] for line in f]
visible = set()
for y, row in enumerate(grid):
height = -1
for x, t in enumerate(row):
if t > height:
visible.add((x, y))
height = t
height = -1
for x, t in reversed(list(enumerate(row))):
if t > height:
visible.add((x, y))
height = t
for x in range(len(grid[0])):
height = -1
for y, row in enumerate(grid):
t = row[x]
if t > height:
visible.add((x, y))
height = t
height = -1
for y, row in reversed(list(enumerate(grid))):
t = row[x]
if t > height:
visible.add((x, y))
height = t
print(len(visible))
def calc_scenic(grid, x, y):
height = grid[y][x]
scores = [0 for _ in range(4)]
for nx in range(x+1, len(grid[y])):
# print('right', nx, y)
scores[0] += 1
if grid[y][nx] >= height:
break
for nx in range(x-1, -1, -1):
# print('left', nx, y)
scores[1] += 1
if grid[y][nx] >= height:
break
for ny in range(y+1, len(grid)):
# print('down', x, ny)
scores[2] += 1
if grid[ny][x] >= height:
break
for ny in range(y-1, -1, -1):
# print('up', x, ny)
scores[3] += 1
if grid[ny][x] >= height:
break
# print(scores)
return reduce(lambda x, y: x * y, scores, 1)
maxscore = 0
# print(calc_scenic(grid, 2, 3))
print(max(calc_scenic(grid, x, y) for x in range(len(grid[0])) for y in range(len(grid))))
|