1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
from abc import abstractmethod
class U16:
def __init__(self, value: int):
self.value = value & 0xffff
def __invert__(self):
return U16(~self.value)
def __and__(self, other):
return U16(self.value & other.value)
def __or__(self, other):
return U16(self.value | other.value)
def __rshift__(self, other):
return U16(self.value >> other.value)
def __lshift__(self, other):
return U16(self.value << other.value)
def __str__(self):
return str(self.value)
def __repr__(self):
return f'{self.value}'
class Node:
_value: U16 | None = None
@property
def value(self) -> U16:
if self._value is None:
self._value = self.eval()
return self._value
@abstractmethod
def eval(self) -> U16:
pass
@abstractmethod
def __repr__(self) -> str:
pass
class Reference(Node):
def __init__(self, net: dict[Node], name: str):
self.net = net
self.name = name
def eval(self) -> U16:
return self.net[self.name].value
def __repr__(self) -> str:
return f'Reference({self.name})'
class Constant(Node):
def __init__(self, value):
self._value = value
def __repr__(self) -> str:
return f'Constant({self.value})'
class BinaryOp(Node):
def __init__(self, left, right):
self.left = left
self.right = right
def __repr__(self) -> str:
return f'{self.__class__.__name__}({self.left}, {self.right})'
class And(BinaryOp):
def eval(self) -> U16:
return self.left.value & self.right.value
class Or(BinaryOp):
def eval(self) -> U16:
return self.left.value | self.right.value
class LShift(BinaryOp):
def eval(self) -> U16:
return self.left.value << self.right.value
class RShift(BinaryOp):
def eval(self) -> U16:
return self.left.value >> self.right.value
class Not(Node):
def __init__(self, node):
self.node = node
def eval(self):
return ~self.node.value
def __repr__(self) -> str:
return 'Not({self.node})'
def parse_expr(net: dict[Node], expr: str) -> Node:
parts = expr.split(' ')
if len(parts) == 3:
lhs = parse_expr(net, parts[0])
rhs = parse_expr(net, parts[2])
if parts[1] == 'AND':
return And(lhs, rhs)
elif parts[1] == 'OR':
return Or(lhs, rhs)
elif parts[1] == 'LSHIFT':
return LShift(lhs, rhs)
elif parts[1] == 'RSHIFT':
return RShift(lhs, rhs)
elif len(parts) == 2:
if parts[0] == 'NOT':
return Not(parse_expr(net, parts[1]))
elif len(parts) == 1:
if expr.isnumeric():
return Constant(U16(int(expr)))
if expr.isalpha():
return Reference(net, expr)
raise ValueError(expr)
def parse_conn(net: dict[Node], conn: str) -> tuple[str, Node]:
expr, target = conn.split(" -> ")
return target, parse_expr(net, expr)
def part1(inp: list[str]) -> int:
net = dict()
for conn in inp:
target, node = parse_conn(net, conn)
net[target] = node
return net['a'].value
def part2(inp: list[str]) -> int:
net = dict()
for conn in inp:
target, node = parse_conn(net, conn)
net[target] = node
net['b'] = Constant(part1(inp))
return net['a'].value
if __name__ == '__main__':
with open('input') as f:
inp = [line.strip() for line in f]
print(part1(inp))
print(part2(inp))
|