/* * Copyright (C) 2013 Wolfgang 'datenwolf' Draxinger * Copyright (C) 2018 Tomasz Kramkowski * SPDX-License-Identifier: WTFPL */ #ifndef LINMATH_H #define LINMATH_H #include typedef float lm_elem; #define LINMATH_H_DEFINE_VEC(n) \ typedef lm_elem vec##n[n]; \ static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ { \ for (int i = 0; i < n; ++i) \ r[i] = a[i] + b[i]; \ } \ static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \ { \ for (int i = 0; i < n; ++i) \ r[i] = a[i] - b[i]; \ } \ static inline void vec##n##_scale(vec##n r, vec##n const v, lm_elem const s) \ { \ for (int i = 0; i < n; ++i) \ r[i] = v[i] * s; \ } \ static inline lm_elem vec##n##_mul_inner(vec##n const a, vec##n const b) \ { \ lm_elem p = 0.0; \ for (int i = 0; i < n; ++i) \ p += b[i] * a[i]; \ return p; \ } \ static inline lm_elem vec##n##_len(vec##n const v) \ { \ return sqrtf(vec##n##_mul_inner(v, v)); \ } \ static inline void vec##n##_norm(vec##n r, vec##n const v) \ { \ lm_elem k = 1.0 / vec##n##_len(v); \ vec##n##_scale(r, v, k); \ } \ static inline void vec##n##_min(vec##n r, vec##n a, vec##n b) \ { \ for (int i = 0; i < n; ++i) \ r[i] = a[i] < b[i] ? a[i] : b[i]; \ } \ static inline void vec##n##_max(vec##n r, vec##n a, vec##n b) \ { \ for (int i = 0; i < n; ++i) \ r[i] = a[i] > b[i] ? a[i] : b[i]; \ } LINMATH_H_DEFINE_VEC(2) LINMATH_H_DEFINE_VEC(3) LINMATH_H_DEFINE_VEC(4) static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) { r[0] = a[1] * b[2] - a[2] * b[1]; r[1] = a[2] * b[0] - a[0] * b[2]; r[2] = a[0] * b[1] - a[1] * b[0]; } static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) { lm_elem p = 2.0f * vec3_mul_inner(v, n); for (int i = 0; i < 3; ++i) r[i] = v[i] - p * n[i]; } static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) { r[0] = a[1] * b[2] - a[2] * b[1]; r[1] = a[2] * b[0] - a[0] * b[2]; r[2] = a[0] * b[1] - a[1] * b[0]; r[3] = 1.0f; } static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) { lm_elem p = 2.0f * vec4_mul_inner(v, n); for (int i = 0; i < 4; ++i) r[i] = v[i] - p * n[i]; } typedef vec4 mat4x4[4]; static inline void mat4x4_identity(mat4x4 M) { for (int i = 0; i < 4; ++i) for (int j = 0; j < 4; ++j) M[i][j] = i == j ? 1.0f : 0.0f; } static inline void mat4x4_dup(mat4x4 M, mat4x4 N) { for (int i = 0; i < 4; ++i) for (int j = 0; j < 4; ++j) M[i][j] = N[i][j]; } static inline void mat4x4_row(vec4 r, mat4x4 M, int i) { for (int k = 0; k < 4; ++k) r[k] = M[k][i]; } static inline void mat4x4_col(vec4 r, mat4x4 M, int i) { for (int k = 0; k < 4; ++k) r[k] = M[i][k]; } static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) { for (int j = 0; j < 4; ++j) for (int i = 0; i < 4; ++i) M[i][j] = N[j][i]; } static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) { for (int i = 0; i < 4; ++i) vec4_add(M[i], a[i], b[i]); } static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) { for (int i = 0; i < 4; ++i) vec4_sub(M[i], a[i], b[i]); } static inline void mat4x4_scale(mat4x4 M, mat4x4 a, lm_elem k) { for (int i = 0; i < 4; ++i) vec4_scale(M[i], a[i], k); } static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, lm_elem x, lm_elem y, lm_elem z) { vec4_scale(M[0], a[0], x); vec4_scale(M[1], a[1], y); vec4_scale(M[2], a[2], z); for (int i = 0; i < 4; ++i) M[3][i] = a[3][i]; } static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) { mat4x4 temp; for (int c = 0; c < 4; ++c) { for (int r = 0; r < 4; ++r) { temp[c][r] = 0.0f; for (int k = 0; k < 4; ++k) temp[c][r] += a[k][r] * b[c][k]; } } mat4x4_dup(M, temp); } static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) { for (int j = 0; j < 4; ++j) { r[j] = 0.0f; for (int i = 0; i < 4; ++i) r[j] += M[i][j] * v[i]; } } static inline void mat4x4_translate(mat4x4 T, lm_elem x, lm_elem y, lm_elem z) { mat4x4_identity(T); T[3][0] = x; T[3][1] = y; T[3][2] = z; } static inline void mat4x4_translate_in_place(mat4x4 M, lm_elem x, lm_elem y, lm_elem z) { vec4 t = {x, y, z, 0}; vec4 r; for (int i = 0; i < 4; ++i) { mat4x4_row(r, M, i); M[3][i] += vec4_mul_inner(r, t); } } static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) { for (int i = 0; i < 4; ++i) for (int j = 0; j < 4; ++j) M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.0f; } static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, lm_elem x, lm_elem y, lm_elem z, lm_elem angle) { lm_elem s = sinf(angle); lm_elem c = cosf(angle); vec3 u = {x, y, z}; if (vec3_len(u) <= 1e-4) { mat4x4_dup(R, M); return; } vec3_norm(u, u); mat4x4 T; mat4x4_from_vec3_mul_outer(T, u, u); mat4x4 S = { { 0, u[2], -u[1], 0 }, { -u[2], 0, u[0], 0 }, { u[1], -u[0], 0, 0 }, { 0, 0, 0, 0 } }; mat4x4_scale(S, S, s); mat4x4 C; mat4x4_identity(C); mat4x4_sub(C, C, T); mat4x4_scale(C, C, c); mat4x4_add(T, T, C); mat4x4_add(T, T, S); T[3][3] = 1.; mat4x4_mul(R, M, T); } static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, lm_elem angle) { lm_elem s = sinf(angle); lm_elem c = cosf(angle); mat4x4 R = { { 1.0f, 0.0f, 0.0f, 0.0f }, { 0.0f, c, s, 0.0f }, { 0.0f, -s, c, 0.0f }, { 0.0f, 0.0f, 0.0f, 1.0f } }; mat4x4_mul(Q, M, R); } static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, lm_elem angle) { lm_elem s = sinf(angle); lm_elem c = cosf(angle); mat4x4 R = { { c, 0.0f, s, 0.0f }, { 0.0f, 1.0f, 0.0f, 0.0f }, { -s, 0.0f, c, 0.0f }, { 0.0f, 0.0f, 0.0f, 1.0f } }; mat4x4_mul(Q, M, R); } static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, lm_elem angle) { lm_elem s = sinf(angle); lm_elem c = cosf(angle); mat4x4 R = { { c, s, 0.0f, 0.0f }, { -s, c, 0.0f, 0.0f }, { 0.0f, 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 0.0f, 1.0f } }; mat4x4_mul(Q, M, R); } static inline void mat4x4_invert(mat4x4 T, mat4x4 M) { lm_elem s[6]; lm_elem c[6]; s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1]; s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2]; s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3]; s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2]; s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3]; s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3]; c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1]; c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2]; c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3]; c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2]; c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3]; c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3]; /* Assumes it is invertible */ lm_elem idet = 1.0f / (s[0] * c[5] - s[1] * c[4] + s[2] * c[3] + s[3] * c[2] - s[4] * c[1] + s[5] * c[0]); T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; } static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) { mat4x4_dup(R, M); lm_elem s; vec3 h; vec3_norm(R[2], R[2]); s = vec3_mul_inner(R[1], R[2]); vec3_scale(h, R[2], s); vec3_sub(R[1], R[1], h); vec3_norm(R[2], R[2]); s = vec3_mul_inner(R[1], R[2]); vec3_scale(h, R[2], s); vec3_sub(R[1], R[1], h); vec3_norm(R[1], R[1]); s = vec3_mul_inner(R[0], R[1]); vec3_scale(h, R[1], s); vec3_sub(R[0], R[0], h); vec3_norm(R[0], R[0]); } static inline void mat4x4_frustum(mat4x4 M, lm_elem l, lm_elem r, lm_elem b, lm_elem t, lm_elem n, lm_elem f) { M[0][0] = 2.0f * n/(r-l); M[0][1] = M[0][2] = M[0][3] = 0.0f; M[1][1] = 2.0 * n/(t-b); M[1][0] = M[1][2] = M[1][3] = 0.0f; M[2][0] = (r+l)/(r-l); M[2][1] = (t+b)/(t-b); M[2][2] = -(f+n)/(f-n); M[2][3] = -1.0f; M[3][2] = -2.0f * (f * n)/(f-n); M[3][0] = M[3][1] = M[3][3] = 0.0f; } static inline void mat4x4_ortho(mat4x4 M, lm_elem l, lm_elem r, lm_elem b, lm_elem t, lm_elem n, lm_elem f) { M[0][0] = 2.0f/(r-l); M[0][1] = M[0][2] = M[0][3] = 0.0f; M[1][1] = 2.0f/(t-b); M[1][0] = M[1][2] = M[1][3] = 0.0f; M[2][2] = -2.0f/(f-n); M[2][0] = M[2][1] = M[2][3] = 0.0f; M[3][0] = -(r+l)/(r-l); M[3][1] = -(t+b)/(t-b); M[3][2] = -(f+n)/(f-n); M[3][3] = 1.0f; } static inline void mat4x4_perspective(mat4x4 m, lm_elem y_fov, lm_elem aspect, lm_elem n, lm_elem f) { lm_elem const a = 1.0f / tan(y_fov / 2.0f); m[0][0] = a / aspect; m[0][1] = 0.0f; m[0][2] = 0.0f; m[0][3] = 0.0f; m[1][0] = 0.0f; m[1][1] = a; m[1][2] = 0.0f; m[1][3] = 0.0f; m[2][0] = 0.0f; m[2][1] = 0.0f; m[2][2] = -((f + n) / (f - n)); m[2][3] = -1.0f; m[3][0] = 0.0f; m[3][1] = 0.0f; m[3][2] = -((2.0f * f * n) / (f - n)); m[3][3] = 0.0f; } static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) { /* Adapted from Android's OpenGL Matrix.java. */ /* See the OpenGL GLUT documentation for gluLookAt for a description */ /* of the algorithm. We implement it in a straightforward way: */ /* TODO: The negation of of can be spared by swapping the order of * operands in the following cross products in the right way. */ vec3 f; vec3_sub(f, center, eye); vec3_norm(f, f); vec3 s; vec3_mul_cross(s, f, up); vec3_norm(s, s); vec3 t; vec3_mul_cross(t, s, f); m[0][0] = s[0]; m[0][1] = t[0]; m[0][2] = -f[0]; m[0][3] = 0.0f; m[1][0] = s[1]; m[1][1] = t[1]; m[1][2] = -f[1]; m[1][3] = 0.0f; m[2][0] = s[2]; m[2][1] = t[2]; m[2][2] = -f[2]; m[2][3] = 0.0f; m[3][0] = 0.0f; m[3][1] = 0.0f; m[3][2] = 0.0f; m[3][3] = 1.0f; mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); } typedef lm_elem quat[4]; static inline void quat_identity(quat q) { q[0] = q[1] = q[2] = 0.0f; q[3] = 1.0f; } static inline void quat_add(quat r, quat a, quat b) { for (int i = 0; i < 4; ++i) r[i] = a[i] + b[i]; } static inline void quat_sub(quat r, quat a, quat b) { for (int i = 0; i < 4; ++i) r[i] = a[i] - b[i]; } static inline void quat_mul(quat r, quat p, quat q) { vec3 w; vec3_mul_cross(r, p, q); vec3_scale(w, p, q[3]); vec3_add(r, r, w); vec3_scale(w, q, p[3]); vec3_add(r, r, w); r[3] = p[3]*q[3] - vec3_mul_inner(p, q); } static inline void quat_scale(quat r, quat v, lm_elem s) { for (int i = 0; i < 4; ++i) r[i] = v[i] * s; } static inline lm_elem quat_inner_product(quat a, quat b) { lm_elem p = 0.0f; for (int i = 0; i < 4; ++i) p += b[i]*a[i]; return p; } static inline void quat_conj(quat r, quat q) { for (int i = 0; i < 3; ++i) r[i] = -q[i]; r[3] = q[3]; } static inline void quat_rotate(quat r, lm_elem angle, vec3 axis) { vec3 v; vec3_scale(v, axis, sinf(angle / 2)); for (int i = 0; i < 3; ++i) r[i] = v[i]; r[3] = cosf(angle / 2); } #define quat_norm vec4_norm static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) { /* * Method by Fabian 'ryg' Giessen (of Farbrausch) * t = 2 * cross(q.xyz, v) * v' = v + q.w * t + cross(q.xyz, t) */ vec3 t; vec3 q_xyz = { q[0], q[1], q[2] }; vec3 u = { q[0], q[1], q[2] }; vec3_mul_cross(t, q_xyz, v); vec3_scale(t, t, 2); vec3_mul_cross(u, q_xyz, t); vec3_scale(t, t, q[3]); vec3_add(r, v, t); vec3_add(r, r, u); } static inline void mat4x4_from_quat(mat4x4 M, quat q) { lm_elem a = q[3]; lm_elem b = q[0]; lm_elem c = q[1]; lm_elem d = q[2]; lm_elem a2 = a * a; lm_elem b2 = b * b; lm_elem c2 = c * c; lm_elem d2 = d * d; M[0][0] = a2 + b2 - c2 - d2; M[0][1] = 2.0f * (b * c + a * d); M[0][2] = 2.0f * (b * d - a * c); M[0][3] = 0.0f; M[1][0] = 2 * (b * c - a * d); M[1][1] = a2 - b2 + c2 - d2; M[1][2] = 2.0f * (c * d + a * b); M[1][3] = 0.0f; M[2][0] = 2.0f * (b * d + a * c); M[2][1] = 2.0f * (c * d - a * b); M[2][2] = a2 - b2 - c2 + d2; M[2][3] = 0.0f; M[3][0] = M[3][1] = M[3][2] = 0.0f; M[3][3] = 1.0f; } static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) { /* XXX: The way this is written only works for othogonal matrices. */ /* TODO: Take care of non-orthogonal case. */ quat_mul_vec3(R[0], q, M[0]); quat_mul_vec3(R[1], q, M[1]); quat_mul_vec3(R[2], q, M[2]); R[3][0] = R[3][1] = R[3][2] = 0.0f; R[3][3] = 1.0f; } static inline void quat_from_mat4x4(quat q, mat4x4 M) { lm_elem r = 0.0f; int perm[] = { 0, 1, 2, 0, 1 }; int *p = perm; for (int i = 0; i < 3; i++) { lm_elem m = M[i][i]; if (m < r) continue; m = r; p = &perm[i]; } r = sqrtf(1.0f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]); if (r < 1e-6) { q[0] = 1.0f; q[1] = q[2] = q[3] = 0.0f; return; } q[0] = r/2.0f; q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.0f * r); q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.0f * r); q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.0f * r); } #endif // LINMATH_H