// SAM4e8e GPIO port // // Copyright (C) 2018 Florian Heilmann // // This file may be distributed under the terms of the GNU GPLv3 license. #include "gpio.h" #include "sam4e.h" #include "autoconf.h" // CONFIG_CLOCK_FREQ #include "board/irq.h" // irq_save #include "command.h" // shutdown #include "sched.h" // sched_shutdown #define GPIO(PORT, NUM) (((PORT)-'A') * 32 + (NUM)) #define GPIO2PORT(PIN) ((PIN) / 32) #define GPIO2BIT(PIN) (1<<((PIN) % 32)) static Pio * const digital_regs[] = { PIOA, PIOB, PIOC, PIOD, PIOE }; void gpio_set_peripheral(char bank, const uint32_t bit, char ptype, uint32_t pull_up) { Pio *regs = digital_regs[bank - 'A']; regs ->PIO_IDR = bit; // Enable peripheral for pin uint32_t sr; switch (ptype) { case 'A': sr = regs->PIO_ABCDSR[0]; regs->PIO_ABCDSR[0] &= (~bit & sr); sr = regs->PIO_ABCDSR[1]; regs->PIO_ABCDSR[1] &= (~bit & sr); break; case 'B': sr = regs->PIO_ABCDSR[0]; regs->PIO_ABCDSR[0] = (bit | sr); sr = regs->PIO_ABCDSR[1]; regs->PIO_ABCDSR[1] &= (~bit & sr); break; case 'C': sr = regs->PIO_ABCDSR[0]; regs->PIO_ABCDSR[0] &= (~bit & sr); sr = regs->PIO_ABCDSR[1]; regs->PIO_ABCDSR[1] = (bit | sr); break; case 'D': sr = regs->PIO_ABCDSR[0]; regs->PIO_ABCDSR[0] = (bit | sr); sr = regs->PIO_ABCDSR[1]; regs->PIO_ABCDSR[1] = (bit | sr); break; } // Disable pin in IO controller regs->PIO_PDR = bit; // Set pullup if (pull_up) { regs->PIO_PUER = bit; } else { regs->PIO_PUDR = bit; } } struct gpio_out gpio_out_setup(uint8_t pin, uint8_t val) { if (GPIO2PORT(pin) >= ARRAY_SIZE(digital_regs)) goto fail; Pio *regs = digital_regs[GPIO2PORT(pin)]; uint32_t bit = GPIO2BIT(pin); uint32_t bank_id = ID_PIOA + GPIO2BIT(pin); irqstatus_t flag = irq_save(); if ((PMC->PMC_PCSR0 & (1u << bank_id)) == 0) { PMC->PMC_PCER0 = 1 << bank_id; } if (val) regs->PIO_SODR = bit; else regs->PIO_CODR = bit; regs->PIO_OER = bit; regs->PIO_OWER = bit; regs->PIO_PER = bit; irq_restore(flag); return (struct gpio_out){ .pin=pin, .regs=regs, .bit=bit }; fail: shutdown("Not an output pin"); } void gpio_out_toggle_noirq(struct gpio_out g) { Pio *regs = g.regs; regs->PIO_ODSR ^= g.bit; } void gpio_out_toggle(struct gpio_out g) { irqstatus_t flag = irq_save(); gpio_out_toggle_noirq(g); irq_restore(flag); } void gpio_out_write(struct gpio_out g, uint8_t val) { Pio *regs = g.regs; if (val) regs->PIO_SODR = g.bit; else regs->PIO_CODR = g.bit; } struct gpio_in gpio_in_setup(uint8_t pin, int8_t pull_up) { if (GPIO2PORT(pin) >= ARRAY_SIZE(digital_regs)) goto fail; uint32_t port = GPIO2PORT(pin); Pio *regs = digital_regs[port]; uint32_t bit = GPIO2BIT(pin); regs->PIO_IDR = bit; irqstatus_t flag = irq_save(); PMC->PMC_PCER0 = 1 << (ID_PIOA + port); if (pull_up) regs->PIO_PUER = bit; else regs->PIO_PUDR = bit; regs->PIO_ODR = bit; regs->PIO_PER = bit; irq_restore(flag); return (struct gpio_in){ .pin=pin, .regs=regs, .bit=bit }; fail: shutdown("Not an input pin"); } uint8_t gpio_in_read(struct gpio_in g) { Pio *regs = g.regs; return !!(regs->PIO_PDSR & g.bit); } /**************************************************************** * Analog Front-End Converter (AFEC) pins (see datasheet sec. 43.5) ****************************************************************/ static const uint8_t afec0_pins[] = { //remove first channel, since it offsets the channel number: GPIO('A', 8), GPIO('A', 17), GPIO('A', 18), GPIO('A', 19), GPIO('A', 20), GPIO('B', 0), GPIO('B', 1), GPIO('C', 13), GPIO('C', 15), GPIO('C', 12), GPIO('C', 29), GPIO('C', 30), GPIO('C', 31), GPIO('C', 26), GPIO('C', 27), GPIO('C',0) }; static const uint8_t afec1_pins[] = { GPIO('B', 2), GPIO('B', 3), GPIO('A', 21), GPIO('A', 22), GPIO('C', 1), GPIO('C', 2), GPIO('C', 3), GPIO('C', 4), /* Artificially pad this array so we can safely iterate over it */ GPIO('B', 2), GPIO('B', 2), GPIO('B', 2), GPIO('B', 2), GPIO('B', 2), GPIO('B', 2), GPIO('B', 2), GPIO('B', 2) }; #define ADC_FREQ_MAX 6000000UL DECL_CONSTANT(ADC_MAX, 4095); inline struct gpio_adc gpio_pin_to_afec(uint8_t pin) { int chan; Afec* afec_device; for (chan=0; ; chan++) { if (chan >= ARRAY_SIZE(afec0_pins)) shutdown("Not a valid ADC pin"); if (afec0_pins[chan] == pin) { afec_device = AFEC0; break; } if (afec1_pins[chan] == pin) { afec_device = AFEC1; break; } } return (struct gpio_adc){.pin=pin, .chan=chan, .afec=afec_device}; } int init_afec(Afec* afec) { // Enable PMC if (afec == AFEC0) PMC->PMC_PCER0 = 1 << ID_AFEC0; else PMC->PMC_PCER0 = 1 << ID_AFEC1; // If busy, return busy if ((afec->AFE_ISR & AFE_ISR_DRDY) == AFE_ISR_DRDY) { return -1; } // Reset afec->AFE_CR = AFE_CR_SWRST; // Configure afec afec->AFE_MR = AFE_MR_ANACH_ALLOWED | \ AFE_MR_PRESCAL (SystemCoreClock / (2 * ADC_FREQ_MAX) -1) | \ AFE_MR_SETTLING_AST3 | \ AFE_MR_TRACKTIM(2) | \ AFE_MR_TRANSFER(1) | \ AFE_MR_STARTUP_SUT64; afec->AFE_EMR = AFE_EMR_TAG | \ AFE_EMR_RES_NO_AVERAGE | \ AFE_EMR_STM; afec->AFE_ACR = AFE_ACR_IBCTL(1); // Disable interrupts afec->AFE_IDR = 0xDF00803F; // Disable SW triggering uint32_t mr = afec->AFE_MR; mr &= ~(AFE_MR_TRGSEL_Msk | AFE_MR_TRGEN | AFE_MR_FREERUN_ON); mr |= AFE_MR_TRGEN_DIS; afec->AFE_MR = mr; return 0; } void gpio_afec_init(void) { while(init_afec(AFEC0) != 0) { (void)(AFEC0->AFE_LCDR & AFE_LCDR_LDATA_Msk); } while(init_afec(AFEC1) != 0) { (void)(AFEC1->AFE_LCDR & AFE_LCDR_LDATA_Msk); } } DECL_INIT(gpio_afec_init); struct gpio_adc gpio_adc_setup(uint8_t pin) { struct gpio_adc adc_pin = gpio_pin_to_afec(pin); Afec *afec = adc_pin.afec; //config channel uint32_t reg = afec->AFE_DIFFR; reg &= ~(1u << adc_pin.chan); afec->AFE_DIFFR = reg; reg = afec->AFE_CGR; reg &= ~(0x03u << (2 * adc_pin.chan)); reg |= 1 << (2 * adc_pin.chan); afec->AFE_CGR = reg; // Configure channel // afec_ch_get_config_defaults(&ch_cfg); // afec_ch_set_config(adc_pin.afec, adc_pin.chan, &ch_cfg); // Remove default internal offset from channel // See Atmel Appnote AT03078 Section 1.5 afec->AFE_CSELR = adc_pin.chan; afec->AFE_COCR = (0x800 & AFE_COCR_AOFF_Msk); // Enable and calibrate Channel afec->AFE_CHER = 1 << adc_pin.chan; reg = afec->AFE_CHSR; afec->AFE_CDOR = reg; afec->AFE_CR = AFE_CR_AUTOCAL; return adc_pin; } enum { AFE_DUMMY=0xff }; uint8_t active_channel_afec0 = AFE_DUMMY; uint8_t active_channel_afec1 = AFE_DUMMY; inline uint8_t get_active_afec_channel(Afec* afec) { if (afec == AFEC0) { return active_channel_afec0; } return active_channel_afec1; } inline void set_active_afec_channel(Afec* afec, uint8_t chan) { if (afec == AFEC0) { active_channel_afec0 = chan; } else { active_channel_afec1 = chan; } } // Try to sample a value. Returns zero if sample ready, otherwise // returns the number of clock ticks the caller should wait before // retrying this function. uint32_t gpio_adc_sample(struct gpio_adc g) { Afec* afec = g.afec; if (get_active_afec_channel(afec) == g.chan) { if ((afec->AFE_ISR & AFE_ISR_DRDY) && (afec->AFE_ISR & (1 << g.chan))) { // Sample now ready return 0; } else { // Busy goto need_delay; } } else if (get_active_afec_channel(g.afec) != AFE_DUMMY) { goto need_delay; } afec->AFE_CHDR = 0x803F; // Disable all channels afec->AFE_CHER = 1 << g.chan; set_active_afec_channel(afec, g.chan); for (uint32_t chan = 0; chan < 16; ++chan) { if ((afec->AFE_ISR & (1 << chan)) != 0) { afec->AFE_CSELR = chan; (void)(afec->AFE_CDR); } } afec->AFE_CR = AFE_CR_START; need_delay: return ADC_FREQ_MAX * 10000ULL / CONFIG_CLOCK_FREQ; // about 400 mcu clock cycles or 40 afec cycles } // Read a value; use only after gpio_adc_sample() returns zero uint16_t gpio_adc_read(struct gpio_adc g) { Afec *afec = g.afec; set_active_afec_channel(g.afec, AFE_DUMMY); afec->AFE_CSELR = g.chan; return afec->AFE_CDR; } // Cancel a sample that may have been started with gpio_adc_sample() void gpio_adc_cancel_sample(struct gpio_adc g) { if (get_active_afec_channel(g.afec) == g.chan) { set_active_afec_channel(g.afec, AFE_DUMMY); } }