# Code for handling the kinematics of linear delta robots # # Copyright (C) 2016-2021 Kevin O'Connor # # This file may be distributed under the terms of the GNU GPLv3 license. import logging import math import mathutil import stepper # Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO SLOW_RATIO = 3.0 class DeltaKinematics: def __init__(self, toolhead, config): # Setup tower rails stepper_configs = [config.getsection("stepper_" + a) for a in "abc"] rail_a = stepper.LookupMultiRail(stepper_configs[0], need_position_minmax=False) a_endstop = rail_a.get_homing_info().position_endstop rail_b = stepper.LookupMultiRail( stepper_configs[1], need_position_minmax=False, default_position_endstop=a_endstop, ) rail_c = stepper.LookupMultiRail( stepper_configs[2], need_position_minmax=False, default_position_endstop=a_endstop, ) self.rails = [rail_a, rail_b, rail_c] # Setup max velocity self.max_velocity, self.max_accel = toolhead.get_max_velocity() self.max_z_velocity = config.getfloat( "max_z_velocity", self.max_velocity, above=0.0, maxval=self.max_velocity ) self.max_z_accel = config.getfloat( "max_z_accel", self.max_accel, above=0.0, maxval=self.max_accel ) # Read radius and arm lengths self.radius = radius = config.getfloat("delta_radius", above=0.0) print_radius = config.getfloat("print_radius", radius, above=0.0) arm_length_a = stepper_configs[0].getfloat("arm_length", above=radius) self.arm_lengths = arm_lengths = [ sconfig.getfloat("arm_length", arm_length_a, above=radius) for sconfig in stepper_configs ] self.arm2 = [arm**2 for arm in arm_lengths] self.abs_endstops = [ (rail.get_homing_info().position_endstop + math.sqrt(arm2 - radius**2)) for rail, arm2 in zip(self.rails, self.arm2) ] # Determine tower locations in cartesian space self.angles = [ sconfig.getfloat("angle", angle) for sconfig, angle in zip(stepper_configs, [210.0, 330.0, 90.0]) ] self.towers = [ ( math.cos(math.radians(angle)) * radius, math.sin(math.radians(angle)) * radius, ) for angle in self.angles ] for r, a, t in zip(self.rails, self.arm2, self.towers): r.setup_itersolve("delta_stepper_alloc", a, t[0], t[1]) for s in self.get_steppers(): s.set_trapq(toolhead.get_trapq()) toolhead.register_step_generator(s.generate_steps) # Setup boundary checks self.need_home = True self.limit_xy2 = -1.0 self.home_position = tuple(self._actuator_to_cartesian(self.abs_endstops)) self.max_z = min( [rail.get_homing_info().position_endstop for rail in self.rails] ) self.min_z = config.getfloat("minimum_z_position", 0, maxval=self.max_z) self.limit_z = min( [ep - arm for ep, arm in zip(self.abs_endstops, arm_lengths)] ) self.min_arm_length = min_arm_length = min(arm_lengths) self.min_arm2 = min_arm_length**2 logging.info( "Delta max build height %.2fmm (radius tapered above %.2fmm)" % (self.max_z, self.limit_z) ) # Find the point where an XY move could result in excessive # tower movement half_min_step_dist = ( min([r.get_steppers()[0].get_step_dist() for r in self.rails]) * 0.5 ) min_arm_length = min(arm_lengths) def ratio_to_xy(ratio): return ( ratio * math.sqrt( min_arm_length**2 / (ratio**2 + 1.0) - half_min_step_dist**2 ) + half_min_step_dist - radius ) self.slow_xy2 = ratio_to_xy(SLOW_RATIO) ** 2 self.very_slow_xy2 = ratio_to_xy(2.0 * SLOW_RATIO) ** 2 self.max_xy2 = ( min(print_radius, min_arm_length - radius, ratio_to_xy(4.0 * SLOW_RATIO)) ** 2 ) max_xy = math.sqrt(self.max_xy2) logging.info( "Delta max build radius %.2fmm (moves slowed past %.2fmm" " and %.2fmm)" % (max_xy, math.sqrt(self.slow_xy2), math.sqrt(self.very_slow_xy2)) ) self.axes_min = toolhead.Coord(-max_xy, -max_xy, self.min_z, 0.0) self.axes_max = toolhead.Coord(max_xy, max_xy, self.max_z, 0.0) self.set_position([0.0, 0.0, 0.0], "") def get_steppers(self): return [s for rail in self.rails for s in rail.get_steppers()] def _actuator_to_cartesian(self, spos): sphere_coords = [(t[0], t[1], sp) for t, sp in zip(self.towers, spos)] return mathutil.trilateration(sphere_coords, self.arm2) def calc_position(self, stepper_positions): spos = [stepper_positions[rail.get_name()] for rail in self.rails] return self._actuator_to_cartesian(spos) def set_position(self, newpos, homing_axes): for rail in self.rails: rail.set_position(newpos) self.limit_xy2 = -1.0 if homing_axes == "xyz": self.need_home = False def clear_homing_state(self, clear_axes): # Clearing homing state for each axis individually is not implemented if clear_axes: self.limit_xy2 = -1 self.need_home = True def home(self, homing_state): # All axes are homed simultaneously homing_state.set_axes([0, 1, 2]) forcepos = list(self.home_position) forcepos[2] = -1.5 * math.sqrt(max(self.arm2) - self.max_xy2) homing_state.home_rails(self.rails, forcepos, self.home_position) def check_move(self, move): end_pos = move.end_pos end_xy2 = end_pos[0] ** 2 + end_pos[1] ** 2 if end_xy2 <= self.limit_xy2 and not move.axes_d[2]: # Normal XY move return if self.need_home: raise move.move_error("Must home first") end_z = end_pos[2] limit_xy2 = self.max_xy2 if end_z > self.limit_z: above_z_limit = end_z - self.limit_z allowed_radius = self.radius - math.sqrt( self.min_arm2 - (self.min_arm_length - above_z_limit) ** 2 ) limit_xy2 = min(limit_xy2, allowed_radius**2) if end_xy2 > limit_xy2 or end_z > self.max_z or end_z < self.min_z: # Move out of range - verify not a homing move if ( end_pos[:2] != self.home_position[:2] or end_z < self.min_z or end_z > self.home_position[2] ): raise move.move_error() limit_xy2 = -1.0 if move.axes_d[2]: z_ratio = move.move_d / abs(move.axes_d[2]) move.limit_speed(self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio) limit_xy2 = -1.0 # Limit the speed/accel of this move if is is at the extreme # end of the build envelope extreme_xy2 = max(end_xy2, move.start_pos[0] ** 2 + move.start_pos[1] ** 2) if extreme_xy2 > self.slow_xy2: r = 0.5 if extreme_xy2 > self.very_slow_xy2: r = 0.25 move.limit_speed(self.max_velocity * r, self.max_accel * r) limit_xy2 = -1.0 self.limit_xy2 = min(limit_xy2, self.slow_xy2) def get_status(self, eventtime): return { "homed_axes": "" if self.need_home else "xyz", "axis_minimum": self.axes_min, "axis_maximum": self.axes_max, "cone_start_z": self.limit_z, } def get_calibration(self): endstops = [rail.get_homing_info().position_endstop for rail in self.rails] stepdists = [rail.get_steppers()[0].get_step_dist() for rail in self.rails] return DeltaCalibration( self.radius, self.angles, self.arm_lengths, endstops, stepdists ) # Delta parameter calibration for DELTA_CALIBRATE tool class DeltaCalibration: def __init__(self, radius, angles, arms, endstops, stepdists): self.radius = radius self.angles = angles self.arms = arms self.endstops = endstops self.stepdists = stepdists # Calculate the XY cartesian coordinates of the delta towers radian_angles = [math.radians(a) for a in angles] self.towers = [ (math.cos(a) * radius, math.sin(a) * radius) for a in radian_angles ] # Calculate the absolute Z height of each tower endstop radius2 = radius**2 self.abs_endstops = [ e + math.sqrt(a**2 - radius2) for e, a in zip(endstops, arms) ] def coordinate_descent_params(self, is_extended): # Determine adjustment parameters (for use with coordinate_descent) adj_params = ( "radius", "angle_a", "angle_b", "endstop_a", "endstop_b", "endstop_c", ) if is_extended: adj_params += ("arm_a", "arm_b", "arm_c") params = {"radius": self.radius} for i, axis in enumerate("abc"): params["angle_" + axis] = self.angles[i] params["arm_" + axis] = self.arms[i] params["endstop_" + axis] = self.endstops[i] params["stepdist_" + axis] = self.stepdists[i] return adj_params, params def new_calibration(self, params): # Create a new calibration object from coordinate_descent params radius = params["radius"] angles = [params["angle_" + a] for a in "abc"] arms = [params["arm_" + a] for a in "abc"] endstops = [params["endstop_" + a] for a in "abc"] stepdists = [params["stepdist_" + a] for a in "abc"] return DeltaCalibration(radius, angles, arms, endstops, stepdists) def get_position_from_stable(self, stable_position): # Return cartesian coordinates for the given stable_position sphere_coords = [ (t[0], t[1], es - sp * sd) for sd, t, es, sp in zip( self.stepdists, self.towers, self.abs_endstops, stable_position ) ] return mathutil.trilateration(sphere_coords, [a**2 for a in self.arms]) def calc_stable_position(self, coord): # Return a stable_position from a cartesian coordinate steppos = [ math.sqrt(a**2 - (t[0] - coord[0]) ** 2 - (t[1] - coord[1]) ** 2) + coord[2] for t, a in zip(self.towers, self.arms) ] return [ (ep - sp) / sd for sd, ep, sp in zip(self.stepdists, self.abs_endstops, steppos) ] def save_state(self, configfile): # Save the current parameters (for use with SAVE_CONFIG) configfile.set("printer", "delta_radius", "%.6f" % (self.radius,)) for i, axis in enumerate("abc"): configfile.set("stepper_" + axis, "angle", "%.6f" % (self.angles[i],)) configfile.set("stepper_" + axis, "arm_length", "%.6f" % (self.arms[i],)) configfile.set( "stepper_" + axis, "position_endstop", "%.6f" % (self.endstops[i],) ) gcode = configfile.get_printer().lookup_object("gcode") gcode.respond_info( "stepper_a: position_endstop: %.6f angle: %.6f arm_length: %.6f\n" "stepper_b: position_endstop: %.6f angle: %.6f arm_length: %.6f\n" "stepper_c: position_endstop: %.6f angle: %.6f arm_length: %.6f\n" "delta_radius: %.6f" % ( self.endstops[0], self.angles[0], self.arms[0], self.endstops[1], self.angles[1], self.arms[1], self.endstops[2], self.angles[2], self.arms[2], self.radius, ) ) def load_kinematics(toolhead, config): return DeltaKinematics(toolhead, config)