1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
//! This is a platform-agnostic Rust driver for the ADS1013, ADS1014, ADS1015,
//! ADS1113, ADS1114, ADS1115, ADS1018 and ADS1118 ultra-small, low-power
//! analog-to-digital converters (ADC), based on the [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Set the operating mode to one-shot or continuous. See: [`into_continuous()`].
//! - Make a measurement in one-shot mode. See: [`read()`].
//! - Set the data rate. See: [`set_data_rate()`].
//! - Set the low and high thresholds. See: [`set_high_threshold()`].
//! - Set the comparator mode. See: [`set_comparator_mode()`].
//! - Set the comparator polarity. See: [`set_comparator_polarity()`].
//!
//! [`into_continuous()`]: struct.Ads1x1x.html#method.into_continuous
//! [`read()`]: struct.Ads1x1x.html#method.read
//! [`set_data_rate()`]: struct.Ads1x1x.html#method.set_data_rate
//! [`set_high_threshold()`]: struct.Ads1x1x.html#method.set_high_threshold
//! [`set_comparator_mode()`]: struct.Ads1x1x.html#method.set_comparator_mode
//! [`set_comparator_polarity()`]: struct.Ads1x1x.html#method.set_comparator_polarity
//!
//! ## The devices
//!
//! The devices are precision, low power, 12/16-bit analog-to-digital
//! converters (ADC) that provide all features necessary to measure the most
//! common sensor signals in an ultra-small package. Depending on the device,
//! these integrate a programmable gain amplifier (PGA), voltage reference,
//! oscillator and high-accuracy temperature sensor.
//!
//! The devices can perform conversions at data rates up to 3300 samples per
//! second (SPS). The PGA offers input ranges from ±256 mV to ±6.144 V,
//! allowing both large and small signals to be measured with high resolution.
//! An input multiplexer (MUX) allows to measure two differential or four
//! single-ended inputs. The high-accuracy temperature sensor can be used for
//! system-level temperature monitoring or cold-junction compensation for
//! thermocouples.
//!
//! The devices operate either in continuous-conversion mode, or in a
//! single-shot mode that automatically powers down after a conversion.
//! Single-shot mode significantly reduces current consumption during idle
//! periods. Data are transferred through a I2C or SPI.
//!
//! Here is a comparison of the caracteristics of the devices:
//!
//! | Device | Resolution | Sample Rate | Channels | Interface | Multi-channel | Features |
//! |---------|------------|--------------|----------|-----------|---------------|------------------------------|
//! | ADS1013 | 12-bit | Max 3300 SPS | 1 | I2C | N/A | |
//! | ADS1014 | 12-bit | Max 3300 SPS | 1 | I2C | N/A | Comparator, PGA |
//! | ADS1015 | 12-bit | Max 3300 SPS | 4 | I2C | Multiplexed | Comparator, PGA |
//! | ADS1018 | 12-bit | Max 3300 SPS | 4 | SPI | Multiplexed | Comparator, PGA, Temp sensor |
//! | ADS1113 | 16-bit | Max 860 SPS | 1 | I2C | N/A | |
//! | ADS1114 | 16-bit | Max 860 SPS | 1 | I2C | N/A | Comparator, PGA |
//! | ADS1115 | 16-bit | Max 860 SPS | 4 | I2C | Multiplexed | Comparator, PGA |
//! | ADS1118 | 16-bit | Max 860 SPS | 4 | SPI | Multiplexed | Comparator, PGA, Temp sensor |
//!
//! Datasheets:
//! - [ADS101x](http://www.ti.com/lit/ds/symlink/ads1015.pdf)
//! - [ADS1018](http://www.ti.com/lit/ds/symlink/ads1018.pdf)
//! - [ADS111x](http://www.ti.com/lit/ds/symlink/ads1115.pdf)
//! - [ADS1118](http://www.ti.com/lit/ds/symlink/ads1118.pdf)
//!
//! ## Usage examples (see also examples folder)
//!
//! To use this driver, import this crate and an `embedded_hal` implementation,
//! then instantiate the appropriate device.
//! In the following examples an instance of the device ADS1013 will be created
//! as an example. Other devices can be created with similar methods like:
//! `Ads1x1x::new_ads1114(...)`.
//!
//! ### Create a driver instance for the ADS1013
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate ads1x1x;
//! use ads1x1x::{ Ads1x1x, SlaveAddr };
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let rtc = Ads1x1x::new_ads1013(dev, address);
//! // do something...
//!
//! // get the I2C device back
//! let dev = rtc.destroy_ads1013();
//! # }
//! ```
//!
//! ### Create a driver instance for the ADS1013 with an alternative address
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate ads1x1x;
//! use ads1x1x::{ Ads1x1x, SlaveAddr };
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let (a1, a0) = (true, false);
//! let address = SlaveAddr::Alternative(a1, a0);
//! let rtc = Ads1x1x::new_ads1013(dev, address);
//! # }
//! ```
#![deny(unsafe_code)]
#![deny(missing_docs)]
#![deny(warnings)]
#![no_std]
extern crate nb;
extern crate embedded_hal as hal;
use core::marker::PhantomData;
/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
/// I²C/SPI bus error
Comm(E),
/// Invalid input data provided
InvalidInputData
}
const DEVICE_BASE_ADDRESS : u8 = 0b100_1000;
/// Mode marker types
pub mod mode {
/// One-shot operating mode / power-down state (default)
pub struct OneShot(());
/// Continuous conversion mode
pub struct Continuous(());
}
/// Data rate
#[derive(Debug, Clone, PartialEq)]
pub enum DataRate {
/// 128 SPS
Sps128,
/// 250 SPS
Sps250,
/// 490 SPS
Sps490,
/// 920 SPS
Sps920,
/// 1600 SPS (default)
Sps1600,
/// 2400 SPS
Sps2400,
/// 3300 SPS
Sps3300
}
/// Comparator mode (only for ADS1x14, ADS1x15)
#[derive(Debug, Clone, PartialEq)]
pub enum ComparatorMode {
/// Traditional comparator (default)
///
/// In this mode the ALERT/RDY pin asserts (according to selected active
/// polarity) when the conversion data exceeds the limit set as *high*
/// threshold and remains active until the conversion data falls below the
/// value set as *low* threshold.
Traditional,
/// Window comparator
///
/// In this mode the ALERT/RDY pin asserts (according to selected active
/// polarity) when the conversion data exceeds the value set as *high*
/// threshold or goes below the value set as *low* temperature threshold.
Window
}
/// Comparator polarity (only for ADS1x14, ADS1x15)
#[derive(Debug, Clone, PartialEq)]
pub enum ComparatorPolarity {
/// Active low (default)
ActiveLow,
/// Active high
ActiveHigh
}
/// Possible slave addresses
#[derive(Debug, Clone)]
pub enum SlaveAddr {
/// Default slave address
Default,
/// Alternative slave address providing bit values for A1 and A0
Alternative(bool, bool)
}
impl Default for SlaveAddr {
/// Default slave address
fn default() -> Self {
SlaveAddr::Default
}
}
impl SlaveAddr {
fn addr(self, default: u8) -> u8 {
match self {
SlaveAddr::Default => default,
SlaveAddr::Alternative(a1, a0) => default |
((a1 as u8) << 1) |
a0 as u8
}
}
}
struct Register;
impl Register {
const CONVERSION : u8 = 0x00;
const CONFIG : u8 = 0x01;
const LOW_TH : u8 = 0x02;
const HIGH_TH : u8 = 0x03;
}
struct BitFlags;
impl BitFlags {
const OP_MODE : u16 = 0b0000_0001_0000_0000;
const OS : u16 = 0b1000_0000_0000_0000;
const DR2 : u16 = 0b0000_0000_1000_0000;
const DR1 : u16 = 0b0000_0000_0100_0000;
const DR0 : u16 = 0b0000_0000_0010_0000;
const COMP_MODE : u16 = 0b0000_0000_0001_0000;
const COMP_POL : u16 = 0b0000_0000_0000_1000;
}
#[derive(Debug, Clone)]
struct Config {
bits: u16
}
impl Config {
fn is_high(&self, mask : u16) -> bool {
(self.bits & mask) != 0
}
fn with_high(&self, mask: u16) -> Self {
Config { bits: self.bits | mask }
}
fn with_low(&self, mask: u16) -> Self {
Config { bits: self.bits & !mask }
}
}
impl Default for Config {
fn default() -> Self {
Config { bits: 0x8583 }
}
}
/// ADS1x1x ADC driver
#[derive(Debug, Default)]
pub struct Ads1x1x<DI, IC, MODE> {
iface: DI,
config: Config,
a_conversion_was_started: bool,
_ic: PhantomData<IC>,
_mode: PhantomData<MODE>
}
#[doc(hidden)]
pub mod interface;
mod devices;
pub use devices::ic;
pub use devices::channel;
mod private {
use super::{ devices::ic, interface };
pub trait Sealed {}
impl<I2C> Sealed for interface::I2cInterface<I2C> {}
impl<SPI, CS> Sealed for interface::SpiInterface<SPI, CS> {}
impl Sealed for ic::Ads1013 {}
impl Sealed for ic::Ads1113 {}
impl Sealed for ic::Ads1014 {}
impl Sealed for ic::Ads1114 {}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn can_get_default_address() {
let addr = SlaveAddr::default();
assert_eq!(DEVICE_BASE_ADDRESS, addr.addr(DEVICE_BASE_ADDRESS));
}
#[test]
fn can_generate_alternative_addresses() {
assert_eq!(0b100_1000, SlaveAddr::Alternative(false, false).addr(DEVICE_BASE_ADDRESS));
assert_eq!(0b100_1001, SlaveAddr::Alternative(false, true).addr(DEVICE_BASE_ADDRESS));
assert_eq!(0b100_1010, SlaveAddr::Alternative(true, false).addr(DEVICE_BASE_ADDRESS));
assert_eq!(0b100_1011, SlaveAddr::Alternative(true, true).addr(DEVICE_BASE_ADDRESS));
}
}
|