1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
//! This is a platform-agnostic Rust driver for the ADS1013, ADS1014, ADS1015,
//! ADS1113, ADS1114, and ADS1115 ultra-small, low-power
//! analog-to-digital converters (ADC), based on the [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Set the operating mode to one-shot or continuous. See: [`into_continuous()`].
//! - Make a measurement in one-shot mode. See: [`read()`][read_os].
//! - Start continuous conversion mode. See: [`start()`].
//! - Read the last measurement made in continuous conversion mode. See: [`read()`][read_cont].
//! - Set the data rate. See: [`set_data_rate()`].
//! - Set the full-scale range (gain amplifier). See [`set_full_scale_range()`].
//! - Read whether a measurement is in progress. See: [`is_measurement_in_progress()`].
//! - Set the ALERT/RDY pin to be used as conversion-ready pin. See: [`use_alert_rdy_pin_as_ready()`].
//! - Comparator:
//! - Set the low and high thresholds. See: [`set_high_threshold_raw()`].
//! - Set the comparator mode. See: [`set_comparator_mode()`].
//! - Set the comparator polarity. See: [`set_comparator_polarity()`].
//! - Set the comparator latching. See: [`set_comparator_latching()`].
//! - Set the comparator queue. See: [`set_comparator_queue()`].
//! - Disable the comparator. See: [`disable_comparator()`].
//!
//! [`into_continuous()`]: struct.Ads1x1x.html#method.into_continuous
//! [read_os]: struct.Ads1x1x.html#method.read
//! [`start()`]: struct.Ads1x1x.html#method.start
//! [read_cont]: struct.Ads1x1x.html#impl-OneShot%3CAds1x1x%3CDI%2C%20IC%2C%20CONV%2C%20OneShot%3E%2C%20i16%2C%20CH%3E
//! [`set_data_rate()`]: struct.Ads1x1x.html#method.set_data_rate
//! [`set_full_scale_range()`]: struct.Ads1x1x.html#method.set_full_scale_range
//! [`is_measurement_in_progress()`]: struct.Ads1x1x.html#method.is_measurement_in_progress
//! [`set_high_threshold_raw()`]: struct.Ads1x1x.html#method.set_high_threshold_raw
//! [`set_comparator_mode()`]: struct.Ads1x1x.html#method.set_comparator_mode
//! [`set_comparator_polarity()`]: struct.Ads1x1x.html#method.set_comparator_polarity
//! [`set_comparator_latching()`]: struct.Ads1x1x.html#method.set_comparator_latching
//! [`set_comparator_queue()`]: struct.Ads1x1x.html#method.set_comparator_queue
//! [`disable_comparator()`]: struct.Ads1x1x.html#method.disable_comparator
//! [`use_alert_rdy_pin_as_ready()`]: struct.Ads1x1x.html#method.use_alert_rdy_pin_as_ready
//!
//! ## The devices
//!
//! The devices are precision, low power, 12/16-bit analog-to-digital
//! converters (ADC) that provide all features necessary to measure the most
//! common sensor signals in an ultra-small package. Depending on the device,
//! these integrate a programmable gain amplifier (PGA), voltage reference,
//! oscillator and high-accuracy temperature sensor.
//!
//! The devices can perform conversions at data rates up to 3300 samples per
//! second (SPS). The PGA offers input ranges from ±256 mV to ±6.144 V,
//! allowing both large and small signals to be measured with high resolution.
//! An input multiplexer (MUX) allows to measure two differential or four
//! single-ended inputs. The high-accuracy temperature sensor can be used for
//! system-level temperature monitoring or cold-junction compensation for
//! thermocouples.
//!
//! The devices operate either in continuous-conversion mode, or in a
//! single-shot mode that automatically powers down after a conversion.
//! Single-shot mode significantly reduces current consumption during idle
//! periods. Data is transferred through I2C.
//!
//! Here is a comparison of the caracteristics of the devices:
//!
//! | Device | Resolution | Sample Rate | Channels | Multi-channel | Features |
//! |---------|------------|--------------|----------|---------------|-----------------|
//! | ADS1013 | 12-bit | Max 3300 SPS | 1 | N/A | |
//! | ADS1014 | 12-bit | Max 3300 SPS | 1 | N/A | Comparator, PGA |
//! | ADS1015 | 12-bit | Max 3300 SPS | 4 | Multiplexed | Comparator, PGA |
//! | ADS1113 | 16-bit | Max 860 SPS | 1 | N/A | |
//! | ADS1114 | 16-bit | Max 860 SPS | 1 | N/A | Comparator, PGA |
//! | ADS1115 | 16-bit | Max 860 SPS | 4 | Multiplexed | Comparator, PGA |
//!
//! Datasheets:
//! - [ADS101x](http://www.ti.com/lit/ds/symlink/ads1015.pdf)
//! - [ADS111x](http://www.ti.com/lit/ds/symlink/ads1115.pdf)
//!
//! ## Usage examples (see also examples folder)
//!
//! To use this driver, import this crate and an `embedded_hal` implementation,
//! then instantiate the appropriate device.
//! In the following examples an instance of the device ADS1013 will be created
//! as an example. Other devices can be created with similar methods like:
//! `Ads1x1x::new_ads1114(...)`.
//!
//! Please find additional examples using hardware in this repository: [driver-examples]
//!
//! [driver-examples]: https://github.com/eldruin/driver-examples
//!
//! ### Create a driver instance for the ADS1013
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate ads1x1x;
//! use ads1x1x::{ Ads1x1x, SlaveAddr };
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let adc = Ads1x1x::new_ads1013(dev, address);
//! // do something...
//!
//! // get the I2C device back
//! let dev = adc.destroy_ads1013();
//! # }
//! ```
//!
//! ### Create a driver instance for the ADS1013 with an alternative address
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate ads1x1x;
//! use ads1x1x::{ Ads1x1x, SlaveAddr };
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let (a1, a0) = (true, false);
//! let address = SlaveAddr::Alternative(a1, a0);
//! let adc = Ads1x1x::new_ads1013(dev, address);
//! # }
//! ```
//!
//! ### Make a one-shot measurement
//! ```no_run
//! extern crate embedded_hal;
//! use embedded_hal::adc::OneShot;
//! extern crate linux_embedded_hal;
//! #[macro_use(block)]
//! extern crate nb;
//! extern crate ads1x1x;
//!
//! use linux_embedded_hal::I2cdev;
//! use ads1x1x::{ Ads1x1x, SlaveAddr, channel };
//!
//! # fn main() {
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut adc = Ads1x1x::new_ads1013(dev, SlaveAddr::default());
//! let measurement = block!(adc.read(&mut channel::DifferentialA0A1)).unwrap();
//! println!("Measurement: {}", measurement);
//! let _dev = adc.destroy_ads1013(); // get I2C device back
//! # }
//! ```
//!
//! ### Change into continuous conversion mode and read the last measurement
//!
//! Changing the mode may fail in case there was a communication error.
//! In this case, you can retrieve the unchanged device from the error type.
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate ads1x1x;
//! use ads1x1x::{ Ads1x1x, SlaveAddr, ModeChangeError };
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let adc = Ads1x1x::new_ads1013(dev, address);
//! match adc.into_continuous() {
//! Err(ModeChangeError::I2C(e, adc)) => /* mode change failed handling */ panic!(),
//! Ok(mut adc) => {
//! let measurement = adc.read().unwrap();
//! // ...
//! }
//! }
//! # }
//! ```
//!
//!
//! ### Set the data rate
//! For 12-bit devices, the available data rates are given by `DataRate12Bit`.
//! For 16-bit devices, the available data rates are given by `DataRate16Bit`.
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate ads1x1x;
//! use ads1x1x::{ Ads1x1x, SlaveAddr, DataRate16Bit };
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let mut adc = Ads1x1x::new_ads1115(dev, address);
//! adc.set_data_rate(DataRate16Bit::Sps860).unwrap();
//! # }
//! ```
//!
//! ### Configure the comparator
//! Configure the comparator to assert when the voltage drops below -1.5V
//! or goes above 1.5V in at least two consecutive conversions. Then the
//! ALERT/RDY pin will be set high and it will be kept so until the
//! measurement is read or an appropriate SMBus alert response is sent by
//! the master.
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! extern crate ads1x1x;
//! use ads1x1x::{ Ads1x1x, SlaveAddr, ComparatorQueue, ComparatorPolarity,
//! ComparatorMode, ComparatorLatching, FullScaleRange };
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let mut adc = Ads1x1x::new_ads1015(dev, address);
//! adc.set_comparator_queue(ComparatorQueue::Two).unwrap();
//! adc.set_comparator_polarity(ComparatorPolarity::ActiveHigh).unwrap();
//! adc.set_comparator_mode(ComparatorMode::Window).unwrap();
//! adc.set_full_scale_range(FullScaleRange::Within2_048V).unwrap();
//! adc.set_low_threshold_raw(-1500).unwrap();
//! adc.set_high_threshold_raw(1500).unwrap();
//! adc.set_comparator_latching(ComparatorLatching::Latching).unwrap();
//! # }
//! ```
#![deny(unsafe_code)]
#![deny(missing_docs)]
#![deny(warnings)]
#![no_std]
extern crate embedded_hal as hal;
extern crate nb;
use core::marker::PhantomData;
/// Errors in this crate
#[derive(Debug)]
pub enum Error<E> {
/// I²C bus error
I2C(E),
/// Invalid input data provided
InvalidInputData,
}
/// Error type for mode changes.
///
/// This allows to retrieve the unchanged device in case of an error.
pub enum ModeChangeError<E, DEV> {
/// I²C bus error while changing mode.
///
/// `E` is the error that happened.
/// `DEV` is the device with the mode unchanged.
I2C(E, DEV),
}
const DEVICE_BASE_ADDRESS: u8 = 0b100_1000;
/// Mode marker types
pub mod mode {
/// One-shot operating mode / power-down state (default)
pub struct OneShot(());
/// Continuous conversion mode
pub struct Continuous(());
}
/// Data rate for ADS1013, ADS1014, ADS1015
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum DataRate12Bit {
/// 128 SPS
Sps128,
/// 250 SPS
Sps250,
/// 490 SPS
Sps490,
/// 920 SPS
Sps920,
/// 1600 SPS (default)
Sps1600,
/// 2400 SPS
Sps2400,
/// 3300 SPS
Sps3300,
}
/// Data rate for ADS1113, ADS1114, ADS1115
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum DataRate16Bit {
/// 8 SPS
Sps8,
/// 16 SPS
Sps16,
/// 32 SPS
Sps32,
/// 64 SPS
Sps64,
/// 128 SPS (default)
Sps128,
/// 250 SPS
Sps250,
/// 475 SPS
Sps475,
/// 860 SPS
Sps860,
}
/// Comparator mode (only for ADS1x14, ADS1x15)
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ComparatorMode {
/// Traditional comparator (default)
///
/// In this mode the ALERT/RDY pin asserts (according to selected active
/// polarity) when the conversion data exceeds the limit set as *high*
/// threshold and remains active until the conversion data falls below the
/// value set as *low* threshold.
Traditional,
/// Window comparator
///
/// In this mode the ALERT/RDY pin asserts (according to selected active
/// polarity) when the conversion data exceeds the value set as *high*
/// threshold or goes below the value set as *low* temperature threshold.
Window,
}
/// Comparator polarity (only for ADS1x14, ADS1x15)
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ComparatorPolarity {
/// Active low (default)
ActiveLow,
/// Active high
ActiveHigh,
}
/// Comparator polarity (only for ADS1x14, ADS1x15)
///
/// Select whether the ALERT/RDY pin latches after being asserted or clears
/// after conversions are within the margin of the upper and lower
/// threshold values.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ComparatorLatching {
/// Nonlatching (default)
///
/// The ALERT/RDY pin does not latch when asserted.
Nonlatching,
/// Latching
///
/// The asserted ALERT/RDY pin remains latched until conversion data are
/// read by the master or an appropriate SMBus alert response is sent by
/// the master. The device responds with its address, and it is the lowest
/// address currently asserting the ALERT/RDY bus line.
Latching,
}
/// Comparator alert queue (only for ADS1x14, ADS1x15)
///
/// The default state of the comparator is deactivated. It can be activated by setting
/// the comparator queue.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ComparatorQueue {
/// Activate comparator and assert after one conversion exceeding thresholds
One,
/// Activate comparator and assert after two consecutive conversions exceeding thresholds
Two,
/// Activate comparator and assert after four consecutive conversions exceeding thresholds
Four,
}
/// Full-scale range configuration for the programmable gain amplifier (PGA) (only for ADS1x14, ADS1x15)
///
/// This sets the input voltage measurable range.
/// The FSR is fixed at ±2.048 V in the ADS1x13.
#[derive(Clone, Copy, Debug, PartialEq)]
#[allow(non_camel_case_types)]
pub enum FullScaleRange {
/// The measurable range is ±6.144V.
Within6_144V,
/// The measurable range is ±4.096V.
Within4_096V,
/// The measurable range is ±2.048V. (default)
Within2_048V,
/// The measurable range is ±1.024V.
Within1_024V,
/// The measurable range is ±0.512V.
Within0_512V,
/// The measurable range is ±0.256V.
Within0_256V,
}
/// Possible slave addresses
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum SlaveAddr {
/// Default slave address
Default,
/// Alternative slave address providing bit values for A1 and A0
Alternative(bool, bool),
}
impl Default for SlaveAddr {
/// Default slave address
fn default() -> Self {
SlaveAddr::Default
}
}
impl SlaveAddr {
fn addr(self, default: u8) -> u8 {
match self {
SlaveAddr::Default => default,
SlaveAddr::Alternative(a1, a0) => default |
((a1 as u8) << 1) |
a0 as u8
}
}
}
struct Register;
impl Register {
const CONVERSION : u8 = 0x00;
const CONFIG : u8 = 0x01;
const LOW_TH : u8 = 0x02;
const HIGH_TH : u8 = 0x03;
}
struct BitFlags;
impl BitFlags {
const OS : u16 = 0b1000_0000_0000_0000;
const MUX2 : u16 = 0b0100_0000_0000_0000;
const MUX1 : u16 = 0b0010_0000_0000_0000;
const MUX0 : u16 = 0b0001_0000_0000_0000;
const PGA2 : u16 = 0b0000_1000_0000_0000;
const PGA1 : u16 = 0b0000_0100_0000_0000;
const PGA0 : u16 = 0b0000_0010_0000_0000;
const OP_MODE : u16 = 0b0000_0001_0000_0000;
const DR2 : u16 = 0b0000_0000_1000_0000;
const DR1 : u16 = 0b0000_0000_0100_0000;
const DR0 : u16 = 0b0000_0000_0010_0000;
const COMP_MODE : u16 = 0b0000_0000_0001_0000;
const COMP_POL : u16 = 0b0000_0000_0000_1000;
const COMP_LAT : u16 = 0b0000_0000_0000_0100;
const COMP_QUE1 : u16 = 0b0000_0000_0000_0010;
const COMP_QUE0 : u16 = 0b0000_0000_0000_0001;
}
#[derive(Debug, Clone, PartialEq)]
struct Config {
bits: u16,
}
impl Config {
fn is_high(&self, mask: u16) -> bool {
(self.bits & mask) != 0
}
fn with_high(&self, mask: u16) -> Self {
Config {
bits: self.bits | mask,
}
}
fn with_low(&self, mask: u16) -> Self {
Config {
bits: self.bits & !mask,
}
}
}
impl Default for Config {
fn default() -> Self {
Config { bits: 0x8583 }
}
}
impl Default for FullScaleRange {
fn default() -> Self {
FullScaleRange::Within2_048V
}
}
/// ADS1x1x ADC driver
#[derive(Debug, Default)]
pub struct Ads1x1x<DI, IC, CONV, MODE> {
iface: DI,
config: Config,
fsr: FullScaleRange,
a_conversion_was_started: bool,
_conv: PhantomData<CONV>,
_ic: PhantomData<IC>,
_mode: PhantomData<MODE>,
}
#[doc(hidden)]
pub mod interface;
#[doc(hidden)]
pub mod ic;
mod channels;
pub use channels::channel;
mod devices;
mod construction;
mod conversion;
pub use conversion::ConvertThreshold;
pub use conversion::ConvertMeasurement;
mod private {
use super::{ic, interface};
pub trait Sealed {}
impl<I2C> Sealed for interface::I2cInterface<I2C> {}
impl Sealed for ic::Resolution12Bit {}
impl Sealed for ic::Resolution16Bit {}
impl Sealed for ic::Ads1013 {}
impl Sealed for ic::Ads1113 {}
impl Sealed for ic::Ads1014 {}
impl Sealed for ic::Ads1114 {}
impl Sealed for ic::Ads1015 {}
impl Sealed for ic::Ads1115 {}
}
#[cfg(test)]
mod tests {
use super::DEVICE_BASE_ADDRESS as ADDR;
use super::*;
#[test]
fn can_get_default_address() {
let addr = SlaveAddr::default();
assert_eq!(ADDR, addr.addr(ADDR));
}
#[test]
fn can_generate_alternative_addresses() {
assert_eq!(0b100_1000, SlaveAddr::Alternative(false, false).addr(ADDR));
assert_eq!(0b100_1001, SlaveAddr::Alternative(false, true).addr(ADDR));
assert_eq!(0b100_1010, SlaveAddr::Alternative(true, false).addr(ADDR));
assert_eq!(0b100_1011, SlaveAddr::Alternative(true, true).addr(ADDR));
}
}
|